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ABSTRACT 

Electroencephalography (EEG) is perhaps the most widely used brain-imaging 

technique for paediatric populations. However, EEG signals are prone to distortion by 

motion-related artifacts, which can severely confound interpretation. Compared to adult EEG, 

motion during infant EEG acquisition is both more frequent and less stereotypical. Yet the 

diverse effects of motion on the infant EEG signal have not been documented. This work 

represents the first systematic assessment of the effects of naturalistic motion on infant and 

adult EEG signals. In Study 1, five mother-infant pairs were video-recorded during 

naturalistic joint- and solo-play with toys. The frequency of occurrence of 27 different facial 

and body motions was time-coded for both adults and infants. Our results suggested that 

movement was continuously present within dyads, and that different types of movement were 

observed when comparing social and non-social play, as well as adults and infants. In Study 

2, one adult and one infant actor each re-created the most commonly occurring facial, limb 

and postural motions from Study 1, allowing us to assess the topological and spectral features 

of motion-related EEG artifacts, as compared to resting state EEG measurements. For the 

adult, all movement types (facial, limb and postural) generated significant increases in 

spectral power relative to resting state. Topographically and spectrally, the strongest 

contamination occurred at peripheral recording sites, and affected delta and high-beta 

frequency bands most severely. Exceptionally, at certain central and centro-parietal channels, 

virtually no motion-induced power changes were observed in theta, alpha and low-beta 

frequencies. By contrast, infant motions mainly produced a decrease in alpha power over 

fronto-central and centro-parietal regions, and was most pronounced for talking and upper 

limb movements. However, with the exception of peripheral channels, the infant theta band 

(3-6 Hz) showed little contamination by face and limb motions. It is intended that this work 

will inform future development of methods for EEG motion-artifact detection and removal, 
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and contribute toward the development of common artifact-related resources and best-

practice guidelines for EEG researchers in social and developmental neuroscience. 

         (329 words) 

 

Keywords: EEG, Signal distortion, Motion artifacts  
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1 INTRODUCTION 

 

1.1 Motion in EEG measurements 

Electroencephalography (EEG) is a widely used brain imaging technique for both 

adult and paediatric populations, owing to its low risk to the individual (Teplan, 2002) and 

ease of application (De Haan, 2013). In particular, rising interest in the neural processes that 

play a critical part in early emotional, social, and cognitive development has led to an 

increased use of EEG with infants and young children (Saby and Marshall, 2012). For 

decades, research in infants and young children has employed EEG as a methodology to 

understand the neural processes involved in numerous aspects of early cognitive development 

(Maguire et al., 2014). Examples include early language acquisition (Kuhl, 2010), visual 

attention and object recognition in infants (Reynolds, 2015), attention (Richards et al., 2010), 

face and emotion processing (Batty et al., 2011) and auditory processing (Telkemeyer et al., 

2011). 

However, EEG recordings are highly prone to distortion by both biological factors 

(such as electromyogenic activity) and non-biological factors (such as electrical line noise) 

(Nathan and Contreras-Vidal, 2015). In particular, artifacts induced by motion (such as head 

motion, jaw motion, or blinking) are a major and common source of EEG distortion. These 

distortions can result in misinterpretation of underlying neural processes or sources; or to the 

inaccurate detection and diagnosis of brain disorders (Guerrero-Mosquera et al., 2012). For 

adult populations, motion artifacts can be avoided or minimised by direct instruction, such as 

asking participants to only swallow and blink during defined periods, and asking them to 

avoid significant head and facial muscle contractions during recordings (Reis et al., 2014). 

While direct instruction may be efficacious for reducing movements in healthy adult 

participants, this strategy is less effective for clinical and paediatric populations whose ability 
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to understand and comply with verbal instruction is greatly reduced. Young infants present a 

particular challenge in this regard, as they have a high natural tendency for movement, which 

cannot be constrained by instruction. Indeed, it is widely acknowledged that EEG recordings 

produced by infants and young children are heavily contaminated by various motion artifacts, 

including gross motor movements and eye blinks (Bell and Cuevas, 2012). Motion artifacts 

can be a major confound to the interpretation of neural data, particularly if the type or 

quantity of motion differs systematically across the experimental conditions or groups of 

interest. 

One common strategy used in infancy paradigms is to reduce motion indirectly 

through attentional capture – that is, the experimenter monitors the infants’ attentional state 

through a video feed and only delivers experimental stimuli during attentive periods when the 

infant is relatively still. However, as exemplified in Table S1 (Supplementary Materials), our 

own studies suggest that even when contingently delivered screen-based stimuli are used 

(including cartoons, real language and artificial language stimuli), infant movement (i.e. 

facial, limb or postural movement) is still present throughout 60-70% of the total stimulus 

presentation time. In more naturalistic paradigms, in which infants are not watching a 

computer monitor but engaged in social interaction, we might expect that artifacts will be 

more prominent still.  

1.2 Naturalistic social paradigms  

The necessity for ecological validity in experimental developmental psychology has 

been emphasised for decades (Tunnell, 1977; Fabes et al., 2000). It is accepted that the 

combination of experimental and naturalistic research methods offers more complete insight 

into child development (Dahl, 2016). Observational assessments of behaviour in the ‘real 

world’, such as in the home or school environment, have higher ecological validity than 
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assessments that occur within structured experiments in laboratory settings. However, real-

world measurements also carry the disadvantage of less (or no) control over key 

environmental variables that can affect behaviour, leading to increased inter-subject 

variability. As a compromise, naturalistic laboratory settings allow for some controlled task-

based variation between participants and facilitate the emergence of more natural behaviour 

whilst at the same time minimising environmental variation (Tamis‐LeMonda et al., 2017; 

Noris et al., 2012). The use of naturalistic methods is more common in social science 

research than in the neurosciences. For example, in education research, naturalistic methods 

are recognised as providing a solution to the problems of diminished construct validity and 

poor generalisability associated with laboratory settings (Smith, 1982). In neuroscience 

research, by contrast, the necessity for carefully controlled experiments has historically 

outweighed the importance of ecological validity. However, across a number of neuroscience 

sub-fields, such as developmental and social neuroscience, the balance is beginning to shift in 

favour of paradigms with greater ecological validity.  

For example, Dumas et al. (2014) argue that many social coordination phenomena 

cannot be observed in the lab without the presence of at least two individuals, and their 

natural social interaction patterns. In these, and other hyperscanning studies, behavioural and 

neural (e.g. EEG) data is typically simultaneously acquired from two or more individuals 

who are engaged in naturalistic social interaction, such as gesture imitation or gaze-following 

(Dumas et al., 2010, 2011). The resulting neural coupling between brains (e.g. centro-parietal 

alpha synchrony) has been found to reflect continuous mutual adaptations of behaviour in 

participant dyads (Dumas et al., 2010). In another example of EEG use during naturalistic 

social interactions, Lindenberger et al. (2009) demonstrated that pairs of guitarists who play 

together also show cross-brain theta phase alignment, which is modulated by the lead 

guitarist’s behavioural gestures as well as the onset of play itself. Finally, Babiloni et al. 
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(2007) used high-density EEG on participants engaged in the “Prisoner’s Dilemma” – a game 

that requires cooperation and competition between the players, therefore engaging higher 

cognitive functions such as memory and decision-making. Based on participants’ 

(naturalistic) social interaction patterns, the authors were able to identify distinct neural 

functional connectivity patterns associated with social cooperation as opposed to conflict or 

competition. In all of these neuroimaging studies, a tension exists between the ecological 

benefits conferred by naturalistic social interaction, and the generation of EEG artifacts from 

participants’ social behaviour (e.g. facial and gesticulatory movements).  

1.3 Current understanding of EEG motion artifacts 

Neural activity at the scalp level is relatively low in amplitude compared to other 

sources of electrical activity, such as electromyogenic potentials and environmental electrical 

noise (i.e. a low signal-to-noise ratio).  Non-biological artifacts (such as line noise) often 

show a different frequency signature from that of neural signals, and can therefore be 

relatively easily isolated by filtering techniques. When adequate grounding is used in an 

electrical interference-free environment, the major source of concern are biological artifacts 

such as muscle contractions, whose frequency content overlaps significantly with that of 

neural signals (and therefore cannot be easily removed by filtering). Amplification that is 

applied to the neural signal also amplifies non-neural contaminants, and therefore does not 

improve neural signal detection. There is already some understanding of the effects of eye 

and jaw motions (as described below). However, this literature pertains almost exclusively to 

adults, and virtually nothing is known about the nature of motion artifacts in infant EEG 

signals. 

 Eye movements. Eye movements in adult EEG paradigms are commonly reported, but 

are difficult to reliably detect and correct. A single eye movement can produce a number of 
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artifacts that arise from different mechanisms (e.g. eye rotations and blinks) and differ in their 

amplitude and spectral properties (Plöchl et al., 2012). Further, eye movements can introduce 

systematic biases in both adult (Yuval-Greenberg et al., 2008; Keren et al., 2010) and infant 

(Koster, 2016) EEG analyses. For example, in a concurrent EEG and eye-tracking paradigm, 

Yuval-Greenberg et al. (2008) showed that the most likely source of the induced gamma-

band EEG response (iGBR) - a neural component associated with visual object 

representation, recognition and attention - was ocular rather than neural. The iGBR typically 

peaks within a 200-300ms window post stimulus onset and has a broad scalp distribution 

(Tallon-Baudry & Bertrand, 1999). Yuval-Greenberg et al. (2008) showed that even at the 

single trial level, activity that was spatially and temporally consistent with the iGBR only 

occurred on saccade trials, and was time-locked to the saccade. Koster (2016) highlighted 

that a similar problem may exist for infant EEG analyses utilising activity in the 25-35 Hz 

gamma range, as it has not yet been clarified whether infant microsaccades also generate 

similar EEG effects.  

Jaw movements. In experimental paradigms, jaw motion commonly occurs as a 

corollary of speech production (Ganushchak et al., 2011). Jaw motion causes significant 

distortion to EEG signals due to facial myogenic potentials originating from contractions of 

the frontalis and temporalis muscles when tensing or clenching the jaws (Sweeney et al., 

2012). Speech-related articulatory motions are known to reduce the signal-to-noise ratio of 

neural signals that relate to cognition (Brooker & Donald, 1980). For instance, the myogenic 

potential generated by the temporalis muscle, used for closing the lower jaw, spreads widely 

over the scalp locations that correspond to the frontal/temporal/parietal junction of the brain, 

generating large broadband artifacts in the EEG signals measured over these regions (Brooker 

& Donald, 1980).  
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1.4 Current strategies for addressing motion artifacts 

There are two major approaches to addressing the problem of movement-related 

artifacts in EEG data. Researchers typically (1) exclude artifact-contaminated segments by 

employing strict rejection procedures/thresholds; or (2) attempt to remove artifacts from data 

using correction procedures such as independent component analysis (ICA) (Gwin et al., 

2010). The first approach (artifact exclusion) is conservative but may entail considerable data 

loss (see for example, Table S1). Therefore, there is increasing interest in methods that permit 

the accurate identification and removal of artifacts from EEG data without significant 

compromise to the integrity of underlying neural activity.  

Several methods have been proposed for the detection and removal of 

physiologically-generated artifacts from the EEG signal. These include the use of linear 

regression (Klados et al., 2011), and blind source separation (BSS) based on Canonical 

Correlation Analysis (CCA, De Vos et al., 2010) or Independent Component Analysis (ICA, 

Porcaro et al., 2015) to separate cortical sources from electromyographic (EMG) responses. 

However, none of these methods is able to completely remove motion artifacts from the EEG 

signal, and may even remove some genuine neural activity of interest. As noted by Islam et 

al. (2016), current artifact detection-removal methods are sub-optimal because these methods 

typically only address a single artifact class and necessitate dedicated reference channels, and 

moreover, frequently result in overcorrection. For example, a common approach to 

addressing some classes of stereotypical artifacts (such as eye blinks) is to include an 

observed reference channel that independently measures the artifact signal (ie. EOG for eye 

muscles, ECG for heartbeat). Next, linear regression or ICA may be employed to estimate the 

similarities between the EEG signal and the reference signal, permitting removal of the 

artifact estimate from the EEG signal (Klados et al., 2011). While this approach can be 

successful for highly-stereotypical artifacts (such as heartbeats), it fails for less stereotypical 
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artifacts, such as EMG responses. Further, the placement of additional reference channels 

(e.g. under the eyes) may not be well tolerated by paediatric and clinical subjects. 

Unlike regression, ICA does not rely on the presence of a reference signal (although 

this can improve performance, see Plöchl et al., 2012), and is therefore a widely used 

approach for artifact removal (Chaumon et al., 2015). ICA is a BSS-based technique which 

additionally assumes that all sources generating the measured signal are orthogonal to each 

other (Islam et al., 2016). BSS techniques, in general, aim to estimate the individual 

contributors to a mixed signal as a linear summation between all sources, with the addition of 

noise. ICA can be useful for isolating brain activity from EMG artifacts (McMenamin et al., 

2010). However, Shackman et al. (2009) caution that the efficacy of ICA in artifact removal 

is highly contingent on the user’s own expertise (e.g. understanding which components, and 

the optimal number of components to remove).  

Other less frequently used methods for artifact removal are Empirical Mode 

Decomposition (EMD), Adaptive filtering (AF), and Principal Component Analysis (PCA), 

(see Islam et al., 2016 for a review). EMD decomposes a signal into a sum of band-limited 

components with well-defined instantaneous frequencies (Molla et al., 2012). EMD does not 

assume linearity or stationarity of the signal and is therefore well suited for EEG. However, 

the method is computationally demanding and has not yet been tested in empirical studies, 

therefore little can be concluded about its efficacy (Islam et al., 2016). In adaptive filtering, a 

linear transfer function filter is used, whose weights are defined by an adaptive optimization 

algorithm (Widrow & Stearns, 1985). The weights are adapted to filter out the artifactual 

source based on a reference channel, which is assumed to be independent from the EEG 

signal. This method has been successfully applied to EOG artifact removal (Islam et al., 

2016). PCA is a spatial filtering procedure in which the EEG signal is orthogonally 

transformed into linearly uncorrelated components (Cohen, 2014). However, as the resulting 
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PCA components are ordered by the amount of variance explained, difficulties arise when 

neural and myogenic signals have similar amplitudes. Therefore, the efficacy of PCA as 

compared to other decomposition techniques has been questioned (Turnip & Junaidi, 2014). 

Newer machine learning approaches have also been employed for automatic 

classification of artifactual and non-artifactual segments of EEG signals. For example, 

O'Regan et al. (2010) trained a classifier to segregate artifactual and neural EEG signals using 

a database of over 300 minutes of head motion contaminated EEG data. In their study, 19 

healthy participants were instructed to perform 32 types of head actions that had previously 

been related to distortions in ambulatory EEG, including head shaking, rolling, nodding, jaw 

clenching, lowering and raising of eye-brows. The EEG signal was epoched into 0.25, 0.5, 

0.75, 1.0, 1.5, 2, 3 and 4-second windows, and features were selected based on measures of 

Mutual Information. Next, a classifier using linear discriminant analysis was trained from a 

random selection of 20% of the data. Results indicated that the selected feature set was 

sufficient for the classifier to be able to distinguish between head motion-contaminated and 

clean EEG with over 66% accuracy, and the performance of the classifier was highest for 

1.0s and 1.5s window lengths (75.66 % and 76.49%, respectively).  

Similarly, Lawhern et al. (2012) investigated methods for automatic detection and 

classification of EEG artifacts generated by different types of jaw and eye movements. Seven 

participants provided 20 repetitions of each movement in time to a pacing tone (one tone 

every two seconds). A baseline (no artifact) condition was also recorded. Epochs of 500ms 

length were extracted to allow for variability in the duration of movements, ensuring that the 

full time-course of each artifact was present in each epoch. An autoregressive model using a 

Maximum Likelihood Estimator was used to estimate features for a support vector machine 

classifier. The procedure was reportedly successful in differentiating between broad classes 

of artifacts such as those generated by jaw and eye movements; but it tended to group 
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together artifacts from a similar or common source, such as jaw clenching and chewing 

movements. However, the error rate of falsely classifying epochs with no artifacts was low 

(the reported average accuracy for 5 out of 7 participants was over 96%, and over 81% for the 

remaining 2). Therefore, newer machine learning approaches may, in future, have strong 

utility for the detection and removal of more complex classes of motion artifacts (such as 

muscular artifacts from head or jaw motion), where more traditional methods have been less 

successful.  

1.5 Study aims 

As the removal of artifacts from EEG data is restricted by current methodological 

limitations, and clinical and infant populations are unable to comply with directions to reduce 

movement to lessen distortion of the signal, there is a clear need for research to report how 

these artifacts distort EEG data. Accordingly, the major aim of this study is to investigate the 

topological and spectral features of motion-related EEG artifacts in adults and infants, as 

compared to resting state EEG measurements. We set out to create a detailed description of 

typical motion-related artifacts, and to identify the spectral signatures and topographies of 

these artifacts in the major EEG frequency bands of interest (0.05 - 40 Hz). 

Two studies were performed. Study 1 was a behavioural study that aimed to identify 

the most prevalent motions in a naturalistic play setting where adult (mother) and infant 

participants interacted with toys in a social or non-social context. We aimed to identify and 

report the typical motions produced by participants during naturalistic play, and to investigate 

how these play-related motions differed between social and non-social experimental 

conditions. Study 2 was an EEG study in which an adult and infant dyad modelled selected 

movements from Study 1. Here, we aimed to describe the effects of different facial, limb and 

postural movements by the adult and infant on their respective recorded EEG signals.   
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STUDY 1 

2.1 Methods 

2.1.1 Participants 

Five infants (1M, 4F) participated in the study along with their mothers. Infants were 

aged between 9.3-14.9 months (range = 278-448 days, mean = 374.80 days, SD = 74.42 

days). Four of the five mothers were native English speakers, and one was native Dutch 

speaker but her infant was exposed daily to English. The mean age for adults was 33.00 years 

(range = 28-37, SD = 3.03 years). All adult participants reported no neurological problems 

and normal hearing and vision for themselves and their infants.  

2.1.2 Materials  

 The set of toys were appropriate for the infants’ age and included toys of differing 

shapes, textures and colours to encourage infants’ interest in playing with them.  

2.1.3 Protocol 

The purpose of this study was to describe and compare the movements produced by 

the adult and the infant while they were playing with objects separately (separate play, 

hereafter SP) or jointly (joint play, hereafter JP). In the experimental setup, the infant sat in a 

high chair, with the adult facing him/her across a table. Joint play and solo play sessions each 

lasted approximately ten minutes, and were conducted in a counterbalanced order across 

participants. During both conditions, an experimenter ensured that participants were playing 

as instructed, and she provided new toys simultaneously to both adult and infant as required 

to sustain their attention and interest. The experimenter explicitly avoided making prolonged 

social contact with either participant. 
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Solo play (SP) condition. A 40 cm high screen was set up across the table, so that 

infant could see the adult, but neither participant had full visibility of each other’s face (this 

was necessary to ensure that play activity was functionally separate, but the infant did not 

become distressed). Figure 1a shows an example of the experimental set-up. Each participant 

was given a toy to play with independently, and adult participants were asked to direct their 

full attention to the toy whilst ignoring the infant. Adults and infants were given the same toy 

to ensure that their visual and tactile experiences would be similar.  

 

Figure 1. Example of the (a) solo play and (b) joint play experimental set-up showing the (left 

column) side view (middle column) infant’s view; and (right column) adult’s view. 

Joint play (JP) condition. For the JP condition, adult participants were asked to play 

with their infant using the same toys provided in the SP condition (see Figure 1b). In this 

condition, the adult was requested to actively engage the infant’s attention using the toy 

objects during joint play. However, the adult was asked to play silently with her infant for 

two reasons. First, we were primarily interested in facial and body movement-related artifacts 

(directly related to naturalistic play and social interaction) rather than speaking-related 

artifacts per se. Second, during the solo play condition, adults were not speaking.  

In both conditions, therefore, the adults were not speaking. However, infants 

occasionally made vocalisations in both conditions, which were included in our analysis.   
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2.1.4 Video recordings   

To record the actions of the participants, two Logitech High Definition Professional 

Web-cameras (30 frames per second) were used, directed at the adult and infant respectively. 

Afterwards, each video recording was manually coded for the behaviours of interest.  

2.1.5 Motion coding  

Videos were first reviewed to qualitatively identify different classes of facial and 

body motions that were produced by the adult and the infant, and could potentially introduce 

artifacts into the EEG signal. This analysis was used to devise a coding scheme 

encompassing 27 different facial and body motions as summarised in Table 2 below, and 

detailed further in the SM (Sections 2.1 - 2.3). All infants and adults were scored on all of the 

items on the coding scheme although some of them were more characteristic of the infants, 

while others of the adults.  

Facial Motion  Body Movement   Head Movement 

Talking Small hand Left-right nodding 

Lip movement Large arm  Up-down neck movement 

Crying Kicking Side-side neck movement 

Laughing Small foot movement  Tongue movement 

Shrieking Large leg movement Arching back 

Coughing Leaning forward  

Sucking Leaning back   

Whining  Bouncing  

Chewing Banging  

Jaw movement    Tapping  
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Table 2. List of facial, body and head movements. Full descriptions of how these were defined 

are given in the Supplementary Materials. 

Each participant’s video was parsed into 5s-long non-overlapping epochs. Within 

each epoch, the occurrence of each motion was coded as being either present [code = 1] or 

absent [code = 0]. The total frequency of occurrence for each motion over the entire session 

was then computed for each participant. Co-occurrences of different motions (e.g. chewing 

and small hand movement) were frequently observed. From the coded frequency data, 

comparative statistics were computed to identify (1) commonly-occurring motions in each 

condition, and (2) motions that differed between social and non-social conditions. An 

example of the coding arising from a single participant pair is given in Figure S1 of the 

Supplementary Materials. 

2.2 Results  

As shown in Figure 2, at least one type of motion was present in over 95% of the time 

epochs during all tasks. A more detailed breakdown of the occurrence of each class of 

motions is provided in Tables S1-S3 of the SM. We also noted that the motions overlapped 

with each other in time (e.g. Figure S1), and infrequently was any one motion observed on its 

own. To assess whether the total prevalence of motion differed between participants or 

conditions, a 2 (Participant: Adult, Infant) x 2 (Play Condition: Solo, Joint) ANOVA was 

conducted. The results showed no significant main effect for Participant, F(1,16) = 3.31, 

p=.09, or for Play Condition, F(1,16) = 2.92, p=.11. The interaction between Participant and 

Play Condition was also non-significant, F (1,16) = 3.01, p=.10. Therefore, we observed 

equal proportions of motion contamination across both play conditions, and for infants’ and 

adults’ artifacts, when all motion types were pooled together.  
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Figure 2. Proportion of the time during Study 1 when at least one movement was observed. 

Error bars show the standard error of the mean. 

Comparative statistics were then computed to identify the most commonly occurring 

motions in each condition; and to assess whether the prevalence of these motions that differed 

between social (Joint Play, JP) and non-social (Solo Play, SP) conditions. Commonly 

occurring motions were defined as motions that occurred at least 10% or more of the time 

(regardless of whether they occurred individually, or in conjunction with other motions). For 

adult participants, the most common motions were: Up-Down Neck, Lip, Jaw, Small Hand, 

Large Arm, Leaning Forward and Leaning Back movements (Figure 3). From inspection of 

Figure 3, the prevalence of all these motions indeed differed between social and non-social 

conditions, apart from Up-Down Neck Movements. In general, motion was more frequently 

observed during Joint Play than Solo Play, with the exception of small hand movements that 

were more frequent during Solo Play. This pattern was confirmed by a series of paired t-tests 

(p-values uncorrected); Lip Movement: t(4) = 2.70, p =.054; Up and Down Neck 

Movements: t(4) = 1.92, p=.13; Jaw Movements: t(4) = 3.10, p<.05; Small Hand Movements: 

t(4) = 4.19, p<.05; Large Arm Movement: t(4) = 5.59, p<.01; Leaning Forward: t(4) = 3.40, 

p<.05; Leaning Back: t(4) = 4.17, p<.05. However, after applying a (conservative) 
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Bonferroni-correction of p-values (alpha = .05), only Large Arm Movements still showed a 

significant increase in prevalence for the Joint Play condition.  

 

Figure 3. Prevalence of adult motions occurring over 10% of the time in each experimental 

condition. *p<.05, ^p=.054 (uncorrected) 

For infants, the most common movements included Talking, Chewing, Whining, 

Side-to-Side neck movements, Up and Down neck movements, Small Hand, Small Foot, 

Large Arm and Large Leg movements (Figure 4). Again, the frequency of each one of these 

movements was compared between the two play conditions using paired t-tests. Only 

Chewing, and Up and Down Neck Movements differed significantly in prevalence between 

Solo and Joint Play conditions, t(4) = 3.68, p<.05 and t(4) = 2.81, p<.05, respectively (p-

values uncorrected, no significant difference for either after Bonferroni correction). There 

was also a marginal difference between conditions for Side to Side Movements (t(4) = 2.76, 

p=.051). Unlike the adult, more of these infant motions occurred during Solo Play than 

during Joint Play. The remaining motions showed no statistical difference in their frequency 

of occurrence between the two play conditions: talking, whining, small hand movements, 

large arm movements, small foot movements, large leg movements (all p>.25).  
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Figure 4. Prevalence of infant motions occurring over 10% of the time in each experimental 

condition. *p<.05; ^p=.051 (uncorrected) 

2.3 Study 1 discussion 

The aim of Study 1 was to identify the most prevalent types of movements that Adult 

and Infant participants produced whilst playing separately and together. Our results revealed 

that, for both infant and adult, and across both play conditions, motion was present over 95% 

of the time in experimental sessions. This therefore represents continuous contamination of 

the EEG signal collected during such periods. For both adult and infant, the most commonly 

occurring types of motion were small hand and large arm movements, which is unsurprising 

given that the paradigm involved object-oriented play. When further considering the types of 

motions that occurred as a function of play condition (Joint or Solo), we found that the 

majority of the adult’s most common motions (including neck, lip, jaw, arm movements and 

postural changes) occurred more frequently during Joint Play than Solo Play, especially large 

arm motions. However, the picture was reversed for infants where an increase in motion 

frequency was observed (e.g. chewing and nodding movements) during Solo Play relative to 
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Joint Play. This pattern suggests that adults made more gestures during Joint Play in order to 

engage their child in play. Conversely, infants who were actively engaged in play with their 

parents were less distracted and therefore showed a lower tendency to move (e.g. out of 

boredom).  
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3 STUDY 2 

 Study 2 aimed to document the EEG signal distortion generated by the commonly 

occurring infant and adult motions observed in Study 1. Accordingly, one adult and one 

infant actor repeatedly performed selected motions from Study 1 whilst their EEG was 

recorded. This motion-contaminated EEG was then compared to their resting state EEG. For 

the adult, we selected the following artifacts to be modelled: Facial Movements (FMs), 

comprising Lip and Jaw movements; Limb Movements (LMs), comprising Hand and Arm 

movements; and finally, Postural Movements (PMs), comprising Up Neck movements, 

Nodding (neck going down); Leaning Forward and Leaning Back. Although Lip, Neck Up 

and Nodding movements did not differ between the two play conditions observed in Study 1, 

they occurred over 10% of the time in the JP condition and therefore their effect on the 

adult’s EEG signal was of interest. For the infant, we selected Facial movements that were 

observed in Study 1 to differ between play conditions including Talking/Babbling and 

Chewing movements. Limb Movements (LMs) for the infant included Hand, Arm, Foot 

and Leg. These were again selected due to their high frequency of occurrence. Finally, 

Postural Movements (PMs) for the infant were Up Neck movements and Nodding.  

3.1 Methods 

3.1.1 Participants  

 One female adult (aged 35 years) and her male infant (18 months) participated in the 

study. The adult was a native English speaker. She reported no neurological problems and 

normal hearing and vision for herself and for her infant.  

3.1.1 Materials  

The same objects and toys were used as in Study 1. The videos from Study 1 were 
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used as a reference to help the adult participant to imitate and reproduce the motions as 

accurately as possible.   

3.1.2 Protocol 

Modelling was performed by an adult and infant to generate multiple isolated and 

stereotypical exemplars of each motion. The elicitation methods for Facial, Limb and 

Postural motions are summarised in Tables 3a and 3b for the adult and infant respectively 

(see Supplementary Materials Sections 3.1 and 3.2 for full descriptions). All motions were 

modelled by the adult participant with between 20 to 56 repetitions (Table 3a), and were 

recorded sequentially. Each adult motion lasted between 0.5 and 3-4 seconds. In contrast, the 

infant’s motions were observed as he was naturally interacting with objects, or watching a 

video. The infant’s motions had a variable number of repetitions, ranging from 24 to 193 

iterations (Table 3b). However, the infant’s motions varied more in length than the adults’, 

lasting from just 0.25 seconds to tens of seconds (e.g. when the same motion, such as leg 

kicking, was continuously repeated). For motion artifact analysis, only periods with obvious 

head or body motions were selected for analysis. As insufficient Postural movements were 

elicited from the infant, no results are presented for this category of motion. 

Resting state (RS) measurements were acquired from the adult in a separate 

continuous recording of 450 seconds during which the participant was instructed to relax with 

her eyes open and fixated on a cross at the centre of a laptop screen (Lenovo ThinkPad, 13”, 

1440 x 900 resolution, 15° angle), and to avoid any intentional movement. She was not 

instructed to avoid blinking or other reflex motions. Her feet, arms and shoulders were rested 

on cushions. For the infant, resting state measurements were obtained during periods of quiet 

relaxation, such as when sitting quietly in a high chair whilst watching a video. The total 

length of concatenated resting state segments from the infant’s recoding was 328 seconds.  
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Motion  Elicitation method N reps 

FACIAL MOTIONS (FMs)   

Lip Movement Elicited through smiling and kissing actions 56 

Jaw Movements  Elicited by silently mouthing through the vowels 22 

LIMB MOTIONS (LMs)   

Hand Using intricate toys to encourage small finger movements 35 

Arm  Slow extensions of the arm forwards 38 

POSTURAL MOTIONS (PMs)   

Neck Up Slowly moving the head upwards, arching the neck up 27 

Nodding Slowly moving the head downwards, contracting the neck 20 

Leaning Forward  Slowly leaning forward in a chair 23 

Leaning Back Slowly leaning back from a leaning forward position 22 

Table 3a. Adult motion elicitation methods and number of repetitions 

Motion  Elicitation method N reps 

FACIAL MOTIONS (FMs)   

Talking/Babbling Soft toys and books were used to elicit talking 43 

Chewing  Elicited using chewable toys or naturally occurring 45 

LIMB MOTIONS (LMs)   

Hand Using intricate toys to encourage small hand movements 116 

Arm  Positioned toys so that infant reached out to retrieve them 193 

Foot  Swept soft brushes and feathers over the infant’s foot 24 

Leg  Naturally occurring when infant kicked legs against table 99 

POSTURAL MOTIONS (PMs)   

Leaning Forward  Slowly leaning forward in a chair 2 

Leaning Back Slowly leaning back from a leaning forward position 0 

Table 3b. Infant motion elicitation methods and number of repetitions 
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3.1.3 Video and EEG acquisition   

Video recordings. As in Study 1, a webcam was used to record the adult and infant 

(30 frames per second). Afterwards, each recording was manually coded to ascertain the 

exact start and end times of the modelled behaviours.  

Video coding. The infant’s and adult’s motion timings were extracted from each video 

using an identical procedure. A video-coder noted the onset and offset time of each motion by 

looking through the recorded video frame by frame. Only motions lasting for longer than 

250ms were included for analysis. An additional inclusion criteria was that only one motion 

should be present at any time – periods containing overlapping motions were excluded from 

the analysis. For the infant’s resting state measurement, a similar approach was taken to 

select only periods when motion was completely absent. For the adult’s resting state 

measurement, the video-coder confirmed that no overt motions were present at any time 

during the EEG recording.  

Video-EEG synchronisation. Video recordings were synchronised to the EEG signal 

by sending triggers via a radio frequency transmitter which marked the EEG trace, and 

produced a light signal that was visible on the video recording. Synchronisation was 

performed manually by recording the exact frame at which the onset of the synchronisation 

light signal occurred. Thus, the synchronisation accuracy was limited to the temporal 

resolution of the video frame rate, which was 30 frames per second (33 ms).  

EEG acquisition. A 32-channel BIOPAC Mobita mobile amplifier was used with an 

Easycap electrode system for both the infant and adult. Data were acquired using 

Acqknowledge 5.0 software, at a 500 Hz sampling rate. The ground electrode was affixed to 

the back of the neck as this location is the least invasive for infants.  
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EEG pre-processing. Noisy channels with raw amplitude fluctuations above 100mV 

above the rest of the channels for over 25% of the recording session were rejected (infant 

recordings: no channels rejected; adult recordings: 0-3 channels rejected across all modelled 

motions). Next, the data were re-referenced to the average of the remaining channels. EEG 

segments containing each type of motion were concatenated, creating separate continuous 

datasets for each motion type, and for resting state. This concatenated data was then visually 

inspected for eye-blinks and high amplitude fluctuations, which were removed unless directly 

arising from the modelled action. Finally, both motion-contaminated and resting state data 

were divided into 1.0s epochs for analysis.  

3.1.4  Analysis of motion-related EEG artifacts 

For clarity of reporting, differences between a given motion-related artifact and 

resting state (RS) are reported for pre-defined frequency bands. The frequency bands for the 

adult data were Delta (1-3 Hz), Theta (3-7 Hz), Alpha (8-12 Hz), Low Beta (13-15 Hz), and 

High Beta (16-20 Hz). As infant oscillations are generally slower than that of their functional 

equivalents in adults (Orekhova et al, 1999), downward-adjusted frequency ranges were used 

for infants: Delta (1-3 Hz), Theta (3-6 Hz), Alpha (6-9 Hz), Low Beta (9-13 Hz), and High 

Beta (13-20 Hz). First, we present the average power (amplitude squared) of the EEG signal 

in each frequency band, averaged over all epochs, for all electrodes. Next, we assessed 

statistically-significant differences between each artifact and resting state. For each electrode 

channel, and in each frequency band, an uncorrected paired t-test was conducted between the 

mean power of the artifact and that of the resting state signal. To ensure comparability, an 

equal number of 1.0s epochs was randomly selected for the resting state condition as was 

available for the artifact. Random epoch selection was conducted 100 times (with 

replacement) and only electrode sites that were significant in over 95% of permutations are 

reported as statistically significant.  
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3.2 Results  

Examples of the raw EEG signal of artifacts produced by motion are provided in 

Section 3.3 (Figures S2 and S3) of the Supplementary Materials.  

3.2.1 Adult motion artifacts 

3.2.1.1 Scalp topographies of adult motion artifacts  

Figure 5 shows the scalp EEG topographies for resting state power (5a) as well as for 

each motion artifact (5b-d), in each frequency band. During resting state, we noted that the 

adult showed significant central midline theta neural activity, and also high power over 

frontal electrodes, particularly in the high beta band (15-20 Hz), which likely corresponded to 

oculomotor activity. Figure 6 plots Cohen’s D as a measure of the t-test effect size for the 

difference in power between each artifact and resting state, at each electrode site, for each 

frequency band. Electrode sites which show a statistically significant difference in power are 

plotted in colour. Hotter colours (i.e. red) indicate an increase in power for the motion-related 

artifact relative to resting state. Colder colours (i.e. blue) indicate a decrease in power for 

motion-related artifact relative to resting state.  
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Figure 5. Scalp topographies of adult EEG power for (a) Resting state; (b) Facial 

movements; (c) Limb movements; and (d) Postural movements. Red indicates a region of high 

power, and blue indicates a region of low power.  
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Figure 6. Plots of Cohen’s D-values for statistically-significant differences in adult EEG 

power between motion artifacts and resting state (RS). In each sub-plot, only scalp regions 

where significant power differences were observed (p < .05) are shown in colour. Grey = 

non-significant result; red = higher power in the artifact; blue = higher power in RS.  
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Facial movements (lip, jaw). As shown in Figure 5b and 6a, across all frequency 

bands, both facial movements generated large increases in power over left and right temporo-

parietal channels across all frequency bands, particularly in the delta and beta bands. By 

contrast, however, both types of facial movement produced little or no significant increase in 

power (as compared to resting state) over the centro-parietal region. Alpha band 

desynchronization (reduction in alpha power) over central electrodes was significantly higher 

during Lip movements as compared to resting state.  

Limb movements (hand, arm). As shown in Figure 5c and Figure 6b, limb movements 

produced relatively smaller power changes than facial movements. Compared to resting state, 

both hand and arm motions generated significant increases in delta power, particularly over 

central electrodes. Further, arm movements (and to a lesser extent, hand movements) 

produced a decrease in beta power over bilateral fronto-temporal electrodes, as well as some 

decreases in alpha power. Uniquely, hand movements elicited a bilateral increase in beta 

power over temporal electrodes.   

Postural movements (neck up, nodding, leaning forward, leaning back). All postural 

movements produced large power increases across all frequency bands over frontal, occipital 

and parieto-occipital channels. Leaning Forwards and Leaning Back, in particular, produced 

very large amplitude increases (over 50 ϻVs across all bands), which could have arisen 

because performing these motions involved synchronized displacement of the ground 

channel. As this is a technical artifact that is specific to the current study, it will not be 

discussed further, and it is recommended that another site for the ground electrode should be 

considered for future studies that involve leaning movements. As shown in Figure 6c, both 

Neck Up and Nodding movements produced large increases in delta (and theta) power over 

almost all channels. By contrast, there were smaller and more localised increases in power 
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observed in alpha and low beta bands, which tended to be confined to frontal or posterior 

(occipital) regions.  

 

3.2.1.2 Frequency spectra of adult motion artifacts  

The previous sections focused on topological differences in the activation patterns 

(power) elicited by adult motion artifacts relative to resting state, in each of 5 frequency 

bands. Here, we present an alternative representation the same data which permits inspection 

of the full frequency spectrum (0-20 Hz) of each motion artifact at each electrode (rather than 

a band average). For example, Figure 7 shows the frequency spectra of the Lip movement 

artifact (black line) relative to the Resting State frequency spectra (red line) for all electrodes. 

The shading around the black line (artifact spectrum) represents its 95% confidence interval, 

and a black asterisk indicates a significant difference between the motion artifact spectrum 

and the resting state spectrum at that particular frequency. Similar frequency plots for each 

motion artifact are provided in Section 3.4 of the SM (Figure S4). Consistent with the 

previous topological plots, this spectral representation of the Lip movement artifact confirms 

that there were the largest increases in power at bilateral temporal-parietal sites (e.g. T7, T8, 

TP9, TP10 where power was significantly elevated for almost all frequencies). This 

representation also confirms that alpha power decreased (relative to resting state) at central 

sites (e.g. Cz, FC1, FC2). 
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Figure 7. Frequency spectrum of adult facial lip movement artifact (black line) and resting 

state (red line) EEG for each electrode site. Shading represents 95% confidence intervals and 

asterisks (*) identify frequencies where a significant difference between conditions was 

observed. 

3.2.1.3  Interim summary (adult motion artifacts) 

Table 4 provides a summary of the results across all frequency bands and channel 

groups. Table 4 is organized by frequency band and by spatial regions of interest (groups of 

adjacent EEG channels). “++” and “--” indicate significantly higher or lower power 

respectively in the motion artifact relative to resting state, observed in more than half of the 

electrode channels and/or frequencies within that region and band. Similarly, “+” and “-” 

indicate that significant differences were observed in less than half of the corresponding 

channels or frequencies. “O” indicates that no significant differences were observed between 

the motion artifact and resting state within that region and frequency band. 

 In general, movement artifacts were observed to generate large and significant 
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increases in adult spectral power relative to resting state, especially in Frontal (Peripheral) 

and Peripheral channels, and particularly in delta and high beta frequency bands. However, 

there were notable exceptions in the Central and Centro-Parietal regions, as well as at POz 

and Oz. For these regions, we frequently noted no significant difference in power between 

adult motion artifacts and resting state in theta, alpha and lower beta bands. Additionally, a 

decrease in alpha power was sometimes observed in motion artifacts relative to resting state 

in central and centro-parietal channels, potentially reflecting alpha desynchronisation.  

 

Table 4. Summary of adult EEG power differences between motion artifacts and resting state 

EEG by frequency band and scalp region. ++: Higher artifact power in > 50% of channels 

or frequencies; +: Higher artifact power in < 50% of channels or frequencies; O: n.s. 

different to RS; --: Lower artifact power in > 50% of channels or frequencies; -: Lower 

artifact power in < 50% of channels or frequencies. 

 

 

 

 



33 
 

3.2.2 Infant motion artifacts 

3.2.2.1 Scalp topographies of infant resting state and motion artifacts 

Resting state. The topology of infant resting state EEG was characterised by high 

alpha power across centro-parietal regions (Figure 8a), consistent with previous reports of the 

infant “mu rhythm” (Cuevas et al, 2014). We also observed strong power in the low and high 

beta bands over bilateral temporal regions, and in the delta band over posterior and midline 

electrodes. As these beta and delta activation patterns were also observed across all 

movement measurements (see Figure 8b, 8c), we inferred that these patterns reflected tonic 

(and not readily-observable) muscular activity in our infant participant (i.e. jaw/neck tension).     

Facial movements (talking/babbling, chewing). The two forms of facial movement 

produced highly similar scalp topographies (see Figure 8b). However, only Talking/Babbling 

produced a significant decrease alpha power over central, parietal and frontal regions relative 

to resting state (see Figure 9a).  

Limb movements (hand, arm, foot, leg). Upper limb (hand and arm) movements 

produced larger decreases in central alpha power than lower limb (foot and leg) movements 

(see Figures 8c and 9b), Additionally, upper limb movements increased delta power over 

bilateral fronto-temporal regions but this was not observed for lower limb movements. Hand 

and arm movements also differed from each other, with hand movements producing much 

stronger and more widespread decreases in alpha and beta power over central scalp regions 

(Figure 9b).  
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Figure 8. Scalp topographies of infant EEG power for (a) Resting state; (b) Facial 

movements; (c) Limb movements; Red indicates a region of high power, and blue indicates a 

region of low power.   
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Figure 9. Plots of Cohen’s D-values for statistically-significant differences in infant EEG 

power between motion artifacts and resting state. In each sub-plot, only scalp regions where 

significant power differences were observed (p<.05) are shown in colour. Grey = non-

significant result; red = higher power in the artifact; blue = higher power in RS. 
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3.2.2.2 Frequency spectra of infant motion artifacts 

Figure 10 shows an illustrative spectral plot for the infant’s Talking/Babbling 

movements (SM Figure S5 shows equivalent plots for other movements). This clearly depicts 

the infant’s resting state alpha peak (red line) which was attenuated over central regions 

during talking/babbling (black line).  

Figure 10. Frequency spectrum of infant talking/babbling artifact (black line) and resting 

state (red line) EEG for each electrode. Shading represents 95% confidence intervals and 

asterisks (*) identify frequencies where a significant difference between conditions was 

observed. 

3.2.3.3  Interim summary (infant motion artifacts) 

Table 5 shows a summary of results across all frequency bands and channel groups 

for the infant. Unlike the adult, the infant’s motions generated only a few significant 

deviations from the resting state power spectrum. Further, the significant changes related 
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mainly to a decrease in alpha power (alpha desynchronization), which was observed mainly 

over fronto-central, central and centro-parietal regions for Talking/Babbling and upper limb 

(Hand, Arm) movements. Increases in spectral power were more rarely observed during the 

production of upper limb movements in the delta and beta bands, over frontal and peripheral 

scalp regions. Finally, it is worth noting that for the infant, with the exception of peripheral 

channels and central channels for hand movements, the theta band did not show significant 

contamination by any of the modelled face and limb motions. Similarly, lower limb (foot, 

leg) movements produced only minimal spectral distortion with respect to the infant’s resting 

state activity. 

 

 

Table 5. Summary of infant EEG power differences between motion artifacts and resting state 

EEG by frequency band and scalp region. ++: Higher artifact power in > 50% of channels 

or frequencies; +: Higher artifact power in < 50% of channels or frequencies; O: n.s. 

different to RS; --: Lower artifact power in > 50% of channels or frequencies; -: Lower 

artifact power in < 50% of channels or frequencies. 
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4 DISCUSSION 

EEG recordings are highly prone to distortion by motion-related artifacts, which can 

result in the misinterpretation of underlying neural processes, or even the inaccurate detection 

and diagnosis of brain disorders (Guerrero-Mosquera et al., 2012). For example, fMRI studies 

have demonstrated that head movements (which are more common in young children and 

clinical conditions such as autism spectrum disorder) can produce biases in computations of 

brain functional connectivity (Deen & Pelphrey, 2012), making it difficult to dissociate true 

experimental/clinical differences in brain functional connectivity from artifactual effects 

arising from increased head motion in the scanner. Young infants present a particular 

challenge as they have a high natural tendency for movement, which cannot be constrained 

by instruction. This work represents the first systematic assessment of the effects of 

naturalistic (social) human motion on the recorded EEG signal – contrasting adult and infant 

motion artifacts. It is intended that this work will build toward a more comprehensive 

database or ‘Artifact Library’ which could later serve as a common resource for EEG 

researchers in social and developmental neuroscience.  

Study 1 assessed the prevalence of motion in adult-infant dyads during social and 

non-social naturalistic play paradigms. We observed that motion occurred during >95% of 

the time, for both infants and adults, and in both types of social play settings. Interestingly, 

whilst adults’ gestural motions (e.g. arm movements) tended to increase in frequency for 

social as compared to non-social play, infants were conversely more engaged during social 

play and therefore made less boredom-related motions (e.g. looking around and chewing). 

For such datasets, it would not be feasible to adopt a simple approach of rejecting (excluding) 

all motion-contaminated data, as this would entail losing an unacceptably high proportion of 

data. However, before artifact removal methods (such as ICA or CCA) can be effectively 
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applied to the EEG signal, it is first necessary to understand the exact distortion that these 

motions would produce. Accordingly, Study 2 attempted to document the topographical and 

spectral properties of each of the most prevalent (frequently-occurring) types of motion that 

were observed in Study 1. This was achieved with the assistance of adult and an infant 

“actors”, who provided repeated exemplars of facial, limb and postural motion whilst their 

EEG was recorded. The spectral properties of these motion-contaminated signals were then 

contrasted against a resting state baseline each for the adult and infant.  

Study 2 showed that for the adult, all types of movement (facial, limb and postural) 

generated significant increases in spectral power relative to resting state. Across all types of 

motion, the strongest contamination occurred in peripheral scalp regions (including frontal 

and temporal sites), particularly in delta and high-beta frequency bands. A few exceptions 

were noted in central and centro-parietal channels (e.g. C3 and C4), as well as at POz and Oz. 

For these regions, motion produced no (or few) significant changes in power in theta, alpha 

and low-beta frequency bands. In particular, we replicated results from previous studies on 

adult speech production artifacts (e.g. Brooker and Donald, 1980; Ganushchak and Schiller, 

2008; Laganaro and Perret, 2011). Muscle artifact contamination was observed to be greatest 

over frontal and temporal scalp regions and to be less severe over central regions, particularly 

at frequencies over 12 Hz. In our study, we also observed significant jaw artifact 

contamination in the delta band (1-3 Hz), suggesting that the common practice of low-pass 

filtering under 12 Hz to remove speech production artifacts may be inadequate.  

By contrast, the infant’s motions generated only a few significant deviations from the 

resting state power spectrum. These changes related mainly to a decrease in alpha power 

(alpha desynchronization), and was observed mainly over fronto-central, central and centro-

parietal regions for Talking/Babbling and upper limb (Hand, Arm) movements. Lower limb 
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(foot, leg) movements produced only minimal spectral distortion with respect to the infant’s 

resting state activity. It is also worth noting that, with the exception of peripheral channels, 

the infant theta band (3-6 Hz) showed virtually no contamination by face and limb motions.  

One potential explanation for the apparent lower motion contamination in infants’ as 

compared to adults’ EEG data could be that insufficient data was collected from infants to 

reveal true differences. However, this is unlikely as the total amount of resting state data was 

comparable for infant (328s) and adult (450s); and the infant also had a higher number of 

recorded instances for all motion types. An alternative explanation could be that inter-trial 

variability was higher in infant than adult motions. However, there was no noticeable 

difference either in the variability of raw data (upon visual inspection), nor in the 95% 

confidence intervals around the FFT mean for every channel and across all frequencies, as 

can be seen in Section 3.4 of the Supplementary Materials. Rather, we suggest that infants’ 

motions deviated less from resting state because of higher variability in infants’ resting state 

baseline. Since we could not instruct the infant actor to produce a state of rest, resting state 

data was collected incidentally (e.g. whilst watching a video) and periods of non-motion were 

identified through video coding. This protocol of recording continuous EEG and selecting 

relevant segments offline is frequently used in infant research (e.g. Orekhova et al., 2014). 

However, it is possible that this procedure inadvertently included some tonic muscle activity 

that was not visible on video, leading to an underestimation of the true extent of the effects of 

motion on the infant’s EEG signal.   

4.1 Implications for EEG research using naturalistic paradigms 

Adult EEG. Given the large and pernicious effects of all classes of motion on the adult 

EEG signal, it is important that any data collected during naturalistic social paradigms is 

interpreted with great care. It may be advisable to completely exclude the most heavily 
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affected electrode sites from analyses (e.g. peripheral frontal and temporal channels), rather 

than to attempt artifact removal. Depending on the type of motion that occurred during the 

paradigm, the signal from the remaining central, parietal and/or occipital channels may 

further benefit from selective bandpass filtering (e.g. to exclude delta and high-beta 

frequencies), before more targeted artifact removal methods are applied. 

Infant EEG. Our results indicated that for the infant, the most common effect of jaw 

and limb motion was to reduce EEG power in the alpha band. Accordingly, if EEG 

researchers are investigating phenomena where infant alpha band effects are predicted (e.g. 

mu de-synchronisation or frontal alpha asymmetry), care must be taken to avoid including 

confounding jaw or limb motions, which can independently create changes in alpha band 

power across frontal and central sites. For example, jaw motions may provide a confounding 

factor when infants suck on a teething toy whilst watching screen-based experimental stimuli. 

It is important that experimenters check, and report (e.g. by video coding) the relative 

occurrence of these movement artifacts in infant participants across experimental conditions 

and groups, to verify that any reported results cannot be explained by differences in patterns 

of movement. We further found that theta band signals from central electrodes were 

selectively spared from contamination across almost all types of motion. Accordingly, it 

could be the case that analyses in this frequency and region may be approached with greater 

confidence, even in the presence of some infant motion. However, more data must be 

gathered from a larger number of infants, and for more types of motion, to verify this. 

4.2 Limitations and Future Directions 

The major limitation to the current work is that both studies were conducted with only 

a small sample size (N=10 for Study 1, N=2 for Study 2). This limits the wider 

generalisability of these findings, as individuals may differ substantially in their motion 
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patterns, and also in the effects of motion on their EEG signals. Nonetheless, the current work 

is an initial, but necessary, first step toward a better understanding of the effects of motion on 

adult and infant EEG data during naturalistic paradigms. Further studies with a larger number 

of participants, and a wider range of modelled motions will be necessary to ascertain the 

extent to which these effects are generalisable, and to inform the future development of 

methods for EEG artifact removal.  
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