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Abstract
When acquiring language, young children may use acoustic spectro-temporal patterns in

speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syl-

lables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, with-

out direct instruction, yet the underlying developmental mechanisms remain unclear.

Across different languages, a relationship between amplitude envelope sensitivity and pho-

nological development has been found, suggesting that children may make use of ampli-

tude modulation (AM) patterns within the envelope to develop a phonological system. Here

we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of

algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using

Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy

comprising 3 core modulation timescales. These timescales correspond to key phonologi-

cal units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime

units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used

by naïve listeners to compute acoustic-phonological mappings without lexical knowledge.

We then demonstrate that the modulation statistics within this AM hierarchy indeed parse

the speech signal into a primitive hierarchically-organised phonological system comprising

stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPHmodel to

two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately

identified 72–82% (freely-read CDS) and 90–98% (rhythmically-regular CDS) stress pat-

terns, syllables and onset-rime units. This in-principle demonstration that primitive phonol-

ogy can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP)

theory. AEP theory provides a set of methods for examining how early phonological devel-

opment is shaped by the temporal modulation structure of speech across languages. The

S-AMPHmodel reveals a crucial developmental role for stress feet (AMs ~2 Hz). Stress feet

underpin different linguistic rhythm typologies, and speech rhythm underpins language

acquisition by infants in all languages.
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Introduction
A necessary step in language acquisition is the development of a phonological system, implicit
knowledge about the inventory of the sound system of a language. In young children, there is
also growing explicit awareness of phonological structure as language acquisition proceeds.
This explicit phonological awareness may be defined as the ability to detect or manipulate any
phonological unit within a word, for example phoneme, rime, or syllable. Explicit phonological
awareness develops in an hierarchical fashion from large to small units across languages.
Awareness of large phonological units (e.g. syllables and rimes) develops spontaneously prior
to literacy tuition, whereas awareness of the smallest sound elements in words (phonemes)
depends on tuition in an alphabetic orthography [1]. For example, by 2–3 years of age, children
can count the number of syllables in a word, and say whether two words rhyme [2]. These are
deceptively complex feats of speech engineering, in principle requiring the child to utilise the
overt acoustic spectro-temporal structure of the speech signal in order to discover the latent
phonological building blocks of the English language. These building blocks can be viewed as a
nested hierarchy of prosodic stress patterns, syllables and onset-rime units.

The acoustic bases of phonological awareness remain under debate, however children with
impaired phonological development (children with developmental dyslexia) show reduced sen-
sitivity to the amplitude modulation (AM) structure of acoustic signals across languages (e.g.,
English, French, Spanish, Hungarian, Dutch, Chinese, Finnish; [3–8]). In each language stud-
ied to date, individual differences in sensitivity to acoustic cues to AM (as measured by chil-
dren's psychophysical thresholds for detecting differences in amplitude envelope “rise times”
or time to the AM peaks) is related to individual differences in phonological awareness. This
relationship is found at multiple linguistic levels (e.g., rise time sensitivity is related to prosodic
awareness, syllable awareness, rhyme awareness, Chinese tone awareness, phoneme awareness;
see [4,8] for recent summaries). These psychophysical data suggest that the ability to extract
information about phonological structure from energy patterns in the amplitude envelope (i.e.
the slow-varying intensity profile of the signal) could be important for phonological develop-
ment, across languages. However, it is unclear which particular aspects of speech spectro-tem-
poral modulation architecture (e.g. which modulation timescales and statistics) are the most
important for transmitting acoustic information relating to the phonological information that
children require to build a language system. The ability to utilise key structural components of
the acoustic signal would be particularly crucial for infants, who must build a phonological sys-
tem from the speech signal ground-up, without the support of pre-existing lexical knowledge.

To investigate in detail how acoustic spectro-temporal structure may be related to linguistic
phonological structure, we here apply a Principle Component Analysis (PCA) approach,
enabling us to examine the core spectro-temporal dimensions and statistics of the amplitude
envelope (AE) of English as spoken to a young child. The AE contains a range of AM patterns
across acoustic frequencies and temporal rates. PCA finds orthogonal, uncorrelated compo-
nents that explain part of the observed variance, and can be used to infer the major spectral fre-
quencies and temporal rates that contribute most to the energy of the CDS signal. We build on
modelling by Turner [9] and McDermott & Simoncelli [10] which has demonstrated that natu-
ral sounds such as rain, fire, birdsong and speech can be described by statistics such as AM
depth, major modulation timescales and cross-frequency-channel modulation dependency.
Turner ([9], p. 89–91) noted that the modulation structure of biological signals (like speech
and birdsong) are characterised by particularly strong correlations across frequency and time.
We used PCA to examine whether the rich and highly inter-correlated spectro-temporal pat-
terning in one corpus of child-directed speech (CDS, nursery rhymes) could be captured by a
core, low-dimensional, modulation architecture that a naive listener could then exploit to
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extract phonological patterns. As well as being rhythmically exaggerated, CDS contains simpler
syntactic structures [11], shorter sentences [12], and concerns topics that are of interest to the
child [13–14]. Thus, CDS provides optimally-structured input for children's extraction of pho-
nological structure. The results of this PCA provided the basic architecture for our Spectral-
Amplitude Modulation Phase Hierarchy Model (S-AMPH). Our model uses the core spectro-
temporal modulation patterning of CDS (an AM hierarchy) to perform acoustic-phonological
structure-mapping. Key modulation statistics within the AM hierarchy (such as maxima and
oscillatory phase-relationships) are utilised to make mappings between acoustic structure and
phonological structure at the prosodic, syllable and onset-rime levels.

To explore the utility of these structure-mappings, we then applied the S-AMPHmodel to
two corpora of nursery rhymes, one rhythmically-timed and one spontaneous (non-timed).
The automatic computations of the model enabled us to assess the efficacy of modulation-
based (signal-based) phonological parsing by the naive listener (i.e. without prior lexical
knowledge). Studies of phonological development in children suggest that the deliberate use of
rhythmically-timed speech plays a critical role developmentally [2]. Rhythmically-timed speech
occurs naturally in the language games, nursery rhymes, singing and playground activities
(e.g., clapping games) of children [15], and in caretaking activities with infants and toddlers
(e.g., singing lullabies, language routines [e.g. during feeding or bouncing on the lap] and Peek-
a-Boo games). When nursery rhymes are spoken spontaneously (rather than sung to a musical
beat), there is little apparent loss of prosodic expression. In spoken mode, speakers are free to
vary syllable and phrase durations, speaking tempo, and even metrical interpretation. Never-
theless, given that most nursery rhymes are perfect metrical poems, it is plausible that strong
rhythmic cues are still present. By using two corpora of CDS, we were able to assess how well
the S-AMPH algorithms extracted phonological structure in more optimal (rhythmically-
timed) and more spontaneous speaking conditions.

The Amplitude Envelope
In signal processing terms, the speech signal can be expressed as the product of the slow-vary-
ing amplitude envelope (which contains the AM patterns) and the quickly-varying fine struc-
ture (which contains frequency modulation [FM] patterns, see [16–17]). In general, AM
patterns are perceived as fluctuations in signal loudness (at slow rates of modulation), or as
rhythm and texture (at faster rates of modulation) [9–10], whereas FM patterns are perceived
as fluctuations in pitch. It is possible to separate the AM-bearing amplitude envelope of speech
from its fine structure by a process of demodulation, the approach adopted here [18–20].
Speech sounds do not contain equal energy over all acoustic frequencies at all points in time,
thus the envelope for low-frequency components (e.g. ~500 Hz, the carrier used in most dys-
lexia studies of AE rise time discrimination, see [4]) will typically be very different from the
envelope for high-frequency components (e.g. ~5000 Hz). Similarly, speech sounds do not con-
tain equal energy across all modulation rates (timescales). In adult-directed speech (ADS), the
modulation spectrum peaks at around 3–5 Hz, the syllable rate (as adults typically produce
around 5 syllables per second, see [21–22]). In speech to very young children (i.e. under 2 years
of age), by contrast, the modulation spectrum peaks at ~ 2 Hz [23]. This peak at the prosodic
rate [24] suggests that different acoustic information is foregrounded in CDS compared to
ADS, with slower modulations (~2 Hz) more dominant in the speech used when speaking to
very young children. The shifted modulation peak suggests that 2 Hz AMs may form an impor-
tant acoustic substrate for language acquisition.

Slower AMs at around 2 Hz contribute to the perception of speech rhythm and prosodic
structure [25]. For example, we have shown that adult listeners' perception of the strong
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metrical patterns in children's nursery rhymes (patterns of alternating strong and weak sylla-
bles, as in the nursery rhyme ‘Mary Mary Quite Contrary’, hereafter referred to as 'Mary Mary')
is determined by the relative phase patterning of slow stress-rate (~2 Hz) AMs and syllable-
rate (~4 Hz) AMs in the wholeband envelope of the speech signal [25]. In many children's
nursery rhymes strong syllables occur approximately every other syllable [26], and indeed
across languages, adults produce stressed syllables approximately twice per second, corre-
sponding to a rate of 2 Hz [27]. Here we assess the modulation architecture of a range of types
of nursery rhyme, covering trochaic patterns (strong-weak syllable alternation, as in ‘Mary
Mary’), iambic patterns (weak-strong syllable alternation, as in the nursery rhyme ‘The Queen
of Hearts she made some tarts’) and dactyl patterns (strong-weak-weak syllable patterning, as
in the nursery rhyme 'Pussycat Pussycat Where Have You Been?'). Developmentally, extraction
of a phonological system takes several years, and is facilitated by a rich set of social learning
mechanisms [28–31]. Here we consider the potential contribution of the modulation statistics
of the speech signal alone. We estimate the efficacy of signal-based acoustic-phonological
structure-mapping by a naive learner using our S-AMPHmodel.

Potential Links to Neuronal Oscillatory Processing of Speech
Our signal-based approach draws upon a convergent area of research regarding the neural
basis of speech processing. Auditory neuroscience studies show that speech encoding may be
related to the entrainment of oscillatory cortical networks [32–35]. Populations of cortical neu-
rons are known to fluctuate in excitability at certain endogenous temporal rates. These oscilla-
tions can be divided into frequency bands, including delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30 Hz) and gamma (30–80 Hz). Amongst these, delta, theta and gamma
oscillations are those most frequently linked to speech perception in experimental studies. For
example, Poeppel and others [32,36] have argued for the central importance of theta band
oscillators in encoding syllable-level information in ADS, while gamma band oscillators are
thought to be important for encoding phonetic information. Goswami [4,8] argued that the
neural delta band (0.5–4 Hz) might also be important developmentally, perhaps for encoding
metrical rhythmic structure (information about syllable stress and prosodic phrasing). Neuro-
nal oscillations in the auditory cortex entrain to both amplitude and frequency modulation
patterns in auditory input. The entrained neural response can be measured using electroenece-
phalography (EEG) or magnetoencephalography (MEG), and is generated in response to AM
patterns in speech [33,37–38] as well as to AM-modulated noise [39]. Furthermore, phase-
locked components in the neural response to ADS (particularly in the theta band, 4–8 Hz) are
correlated with speech comprehension and intelligibility [33,37,40]. Cortical oscillations are
hierarchically-nested [35,41], for example delta phase modulates theta phase, and theta phase
modulates gamma power. This oscillatory hierarchy provides an ideal neural mechanism for
multi-timescale encoding and parsing of the speech signal [33,34,36]. Indeed, Gross et al [35]
demonstrated that the neuronal oscillatory hierarchy can entrain to an equivalent hierarchy of
acoustic modulation patterns in ADS, enabling each tier of the hierarchy to parse acoustic
information relevant to phonological patterning at different timescales (i.e. delta-stress pattern-
ing, theta-syllable patterning, gamma-phonetic patterning).

Nevertheless, there is still considerable debate around the potential functional role(s) of cor-
tical entrainment to speech and whether the neural tracking of the speech envelope is related to
intrinsic neural oscillations [42]. Cortical entrainment has been implicated in the encoding of
acoustic features, in the parsing of boundaries between syllables, and in the selection of sensory
information in complex listening environments [42]. Despite these demonstrations, to date it
is not known whether an acoustic hierarchy of modulation patterns exists in the speech signal
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that matches key neural timescales. Also unexplored is the efficacy of such a neuro-acoustic
model for real-life speech processing. For example, one criticism of multi-timescale models has
been that natural speech is not a highly rhythmic signal, and hence the extent to which a rhyth-
mically-regular parsing mechanism (neuronal oscillations) could capture real-life patterns of
uttered syllables is doubtful [43].

Accordingly, one major aim of the current modelling is to understand the core spectro-tem-
poral patterning in CDS, a natural register used with children which does exhibit strong rhyth-
mic patterning. Indeed, the English nursery rhyme deliberately uses a range of metrical
patterning (e.g. trochaic [Strong-weak], iambic [weak-Strong], dactyl [Strong-weak-weak])
and children find these different rhythmic patterns very enjoyable. Although we do not assess
the related question of neural efficacy here, it is plausible that the rhythms and rhymes of the
nursery are developmentally adaptive. Our S-AMPHmodel therefore utilises oscillatory mech-
anisms and landmarks such as auditory edges (rise times) to perform acoustic-phonological
structure-mapping, and thus provides an in-principle source of evidence on the extent to which
neuro-acoustic models of speech processing could be successful for parsing highly rhythmic
CDS.

We present two related studies, which we preview here. The first is a PCA analysis to uncover
the core spectro-temporal dimensions and statistics of the amplitude envelope (AE) of English
CDS using a nursery rhyme corpus. This PCA analysis results in the identification of 5 spectral
bands and 3 modulation rate bands (as detailed in the first and third tables of the Results sec-
tion) that provide the basis for the hierarchical modulation architecture that underpins the
S-AMPHmodel. An example of this 5x3 S-AMPH representation of CDS AM patterns is
shown in the third figure of the Results section. The second study then goes on to address the
potential relationship between acoustic modulation structure (as formalised in the S-AMPH
model) and linguistic phonological structure (hierarchical patterns of stress, syllables and onset-
rime units). We derive Acoustic-Emergent Phonology theory by using the S-AMPH computa-
tional model to perform acoustic-phonological mapping with two nursery rhyme corpora, one
timed (Nursery Rhyme Corpus 2) and one spoken spontaneously (Nursery Rhyme Corpus 3,
note that this corpus is a subset of the nursery rhymes in Nursery Rhyme Corpus 1). Modulation
patterns in the speech signal are used to parse and extract phonological structure automatically,
via structure-mapping between the acoustic signal and the phonological hierarchy. We propose
several core principles for acoustic-phonological mapping—these include a 1:1 structural rela-
tionship between AM cycles and phonological units, and the use of hierarchical AM phase rela-
tionships to infer prosodic prominence (see the last figure of the Results section for an
illustration). We demonstrate that these automatic mappings enable primitive phonology at
stress, syllable and onset-rime levels to be extracted from rhythmic CDS with a high degree of
efficiency (see the last table of the Results section).

Methods

Ethics Statement
This study was approved by the Cambridge Psychology Research Ethics Committee. Written
informed consent was obtained from all participants using a consent form and information
sheet approved by the Cambridge Psychology Research Ethics Committee.

Speech Materials for PCA Analysis
Nursery Rhymes Corpus 1. The speech materials used in the PCA analysis were 44 chil-

dren's nursery rhymes each read in a child-directed manner by 6 different female native speak-
ers of British English, giving a total of 264 spoken samples. The full list of nursery rhymes is

Acoustic-Emergent Phonology (AEP) in the Amplitude Envelope

PLOS ONE | DOI:10.1371/journal.pone.0144411 December 7, 2015 5 / 37



provided in S1 Appendix and the speech data are available for download at: http://figshare.
com/s/f8012786bda511e48b4906ec4bbcf141. S1 Appendix also provides the metadata for this
CDS corpus. The text for the nursery rhymes was compiled from children's books such as 'This
Little Puffin' [44] and 'Nursery Treasury' [45]. All 6 female speakers had extensive prior experi-
ence in working with young children. Two participants were Cambridge University lecturers in
early years education (having previously been teachers), and a further two participants were, at
the time, working as early years teachers. One participant was a speech and language therapist
working with children. The final participant was an ex-teacher and doctoral student whose
research involved working with children using poetry. All the speakers were familiar with the
children's nursery rhymes and stories used in this study but were unaware of the goals of the
study. To elicit child-directed speech, speakers were prompted with a picture depicting young
children of a nursery age (i.e. 3–5 years old). They were told to speak in a lively and engaging
manner as if they were conversing with the children in the picture. Each speaker was allowed
to speak the nursery rhymes at her own natural pace (rather than speaking in time to a metro-
nome), such that the utterances retained their natural cadence and flow. All speech samples
were digitally recorded using a TASCAM digital recorder (44.1 kHz, 24-bit), together with an
AKG C1000S condenser microphone.

Speech Materials for Model Evaluation
(a) Timed speech: Nursery Rhyme Corpus 2. The timed child-directed speech was gener-

ated by asking 3 native English speakers (1 M, 2 F) to repeat a single nursery rhyme in time to a
3 Hz metronome beat. Four different prosodic templates were used, as shown in Table 1, yield-
ing 12 sentences in total. The nursery rhyme was "Jack and Jill went up the hill to fetch a pail of
water, Jack fell down and broke his crown, and Jill came tumbling after". The speakers were
asked to vary the prosodic patterning of the rhyme to reflect common metrical patterns in
English (i.e. trochees, iambs, dactyls and amphibrachs). Speakers were allowed to practice each
prosodic variation to proficiency before their utterances were recorded. These recordings com-
prised Nursery Rhyme Corpus 2.

(b) Untimed speech: Nursery Rhyme Corpus 3. The untimed child-directed speech con-
sisted of 20 nursery rhyme sentences, each produced by 6 female native English speakers, yield-
ing a total of 120 sentences. These sentences comprised Nursery Rhyme Corpus 3. Each
nursery rhyme sentence was 24 syllables long, and the 20 nursery rhymes were selected from
the larger set of 44 nursery rhymes that were used in the PCA exercise. As shown in Table 2,
ten of these sentences were the first lines of bi-syllable footed nursery rhymes (i.e. predomi-
nantly trochaic or iambic patterning), and the other ten sentences were the first lines of tri-syl-
lable footed nursery rhymes (i.e. predominantly dactyl or amphibrach patterning). Each
nursery rhymes was freely-read by native English speaking early-years practitioners, as if they
were speaking to young children. Each speaker was allowed to read the sentences at her own

Table 1. Prosodic templates for metronome-timed sentences in Corpus 2.

Syllable Stress Pattern (CAPITAL LETTERS = stressed) Prosodic Foot

JACK and JILL went UP the HILL to FETCH a PAIL of WAter. . . Trochaic (Sw)

jack AND jill WENT up THE hill TO fetch A pail OF waTER. . . Iambic (wS)

JACK and jill WENT up the HILL to fetch A pail of WAter. . . Dactyl (Sww)

jack AND jill went UP the hill TO fetch a PAIL of waTER. . . Amphibrach (wSw)

Stressed syllables are shown in capital letters.

doi:10.1371/journal.pone.0144411.t001
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natural pace, rather than speaking in time to a metronome. Consequently her rate of speaking
could vary considerably within the same utterance.

All timed and untimed speech samples were digitally recorded using a TASCAM digital
recorder (44.1 kHz, 24-bit), together with an AKG C1000S condenser microphone. The digital
sound file of each sentence was then manually analysed to locate the "ground-truth" location of
its syllables, their onset-rime divisions, and to transcribe its prosodic stress patterning. To
locate syllables and their onset-rime divisions, the midpoints (for syllable locations) and onsets
(for onset-rime divisions) of all syllable vowel nuclei were manually annotated using Praat soft-
ware [46]. The stress patterns of each sentence (i.e. pattern of 'S' and 'w' syllables) were then
manually stress-transcribed by a female native English speaker with formal training in Linguis-
tics (not the authors). Stress transcription was done by listening to each sentence carefully, and
judging whether each syllable sounded stressed or unstressed. The hypotheses of the current
study were not disclosed to the individual doing the transcription so that her judgments would
be unbiased.

Table 3 shows the key acoustic parameters for the three CDS corpora. For comparison, the
same acoustic parameters were also measured for a corpus of adult-directed speech that was
produced by the 6 female speakers of CDS Corpora 1 & 3 (see S4 Appendix for ADS descrip-
tion). Consistent with the prior literature [28–29], all 3 CDS corpora have a higher mean and
maximum intensity than ADS. For the pitch measures, both female-only CDS corpora (1 & 3)
were higher in mean pitch than the female-only ADS corpus as expected. However, the mixed
CDS corpus 2 (1M, 2F speakers) had a similar mean pitch to the female-only ADS corpus, due
to the lower fundamental frequency of the male speaker. CDS corpus 1 (the stimulus set used
in PCA analysis for model derivation) was also higher in maximum pitch than the ADS sample,
but the other CDS corpora showed a lower maximum pitch than the ADS sample.

Table 2. List of 20 untimed nursery rhyme sentences, each 24 syllables long.

Bi-Syllable Foot Tri-Syllable Foot

1. Old MacDonald had a farm, E-I-E-I-O. And on
that farm he had some cows, E-I-E-I

1. Little Miss Muffet sat on a tuffet eating her curds
and whey. There came a big spider who sat . . .

2. Mary had a little lamb its fleece was white as
snow. And everywhere that Mary went the lamb was
. . .

2. Little Jack Horner sat in a corner eating his
Christmas pie. He stuck in his thumb and pulled out
. . .

3. Polly put the kettle on, Polly put the kettle on,
Polly put the kettle on, we'll all have . . .

3. Little Boy Blue come blow your horn, the sheep's
in the meadow the cow's in the corn. Where is the
boy who . . .

4. Yankee Doodle came to London riding on a pony.
He stuck a feather in his hat and called . . .

4. Curly locks, curly locks will you be mine? You
shall not wash dishes nor feed the swine, but sit on
a. . .

5. Peter Peter pumpkin eater had a wife and
couldn't keep her. Put her in a pumpkin shell and . . .

5. To market to market to buy a fat pig. Home again
home again dancing a jig. To market . . .

6. Mary Mary quite contrary, how does your garden
grow? With silver bells and cockle shells and pre . . .

6. Pussycat pussycat where have you been? I've
been up to London to visit the Queen. Pussycat . . .

7. Simple Simon met a pieman going to the fair.
Says Simple Simon to the pieman, "let me . . .

7. Ladybird ladybird fly away home, your house is
on fire and your children are gone. All except . . .

8. Lucy Lockett lost her pocket, Kitty Fisher found it.
Not a penny was there in it, only . . .

8. There was an old Lady who swallowed a spider,
that wriggled and wiggled and tickled inside her . . .

9. Cobbler Cobbler mend my shoe, get it done by
half past two. Half past two is much too late, get it
done . . .

9. There once were two cats of Kilkenny. Each
thought there was one cat too many. So they fought
and they fit . . .

10. Peter Piper picked a peck of pickled peppers. A
peck of pickled peppers Peter Piper picked . . ..

10. Lavender's blue, dilly dilly, lavender's green.
When I am king, dilly dilly, you shall be queen . . .

doi:10.1371/journal.pone.0144411.t002
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This acoustic analysis confirms that the CDS corpora showed the appropriate acoustic hall-
marks of child-directedness [28–29], and that intensity (the key acoustic parameter being mod-
elled here) was appropriately and consistently modulated in our speakers' utterances.

Signal Pre-Processing
The purpose of signal pre-processing was to generate high-dimensional representations of the
AM structure of each speech sample in the spectral and temporal domains respectively. These
high-dimensional representations form the substrate for later dimensionality reduction by
PCA, whose purpose is to infer the underlying core modulation architecture of the signal. For
example, in the spectral domain, 28 dimensions are generated by pre-processing, correspond-
ing to the time-varying AM patterns in each of 28 finely-spaced acoustic frequency bands span-
ning 100–7250 Hz. In the temporal domain, 24 dimensions are generated by pre-processing,
corresponding to the time-varying AM patterns at different oscillatory rates from 0.9–40 Hz.

(a) Generation of High-Dimensional Representation of Spectral Modulation. As
shown in Fig 1, a high-dimensional representation of the spectral modulation patterns in the
speech signal was constructed in 2 steps. First, the raw acoustic signal was passed through a
finely-spaced ERBN (equivalent rectangular bandwidth) spectral filterbank that mirrored the
frequency decomposition that is performed at the cochlea of a normal human listener [47–48].
This filtering step effectively split the speech signal into 28 log-spaced audio frequency chan-
nels spanning 137–7250 Hz. The parameters and frequency response characteristics of the
ERBN spectral filterbank are provided in S2 Appendix. In the next step, the Hilbert envelope
was extracted from each of the 28 channel outputs of the spectral filterbank, and low-pass fil-
tered under 40 Hz.

Fig 2 illustrates the resulting high-dimensional (i.e. 28 channel) set of envelopes from each
spectral band for the nursery rhyme sentence "Twinkle twinkle little star". From Fig 2, it may be
observed that certain groups of spectral channels tend to show similar patterns of activation
over time. For example, the high-frequency channels, plotted in red (~ above 4000 Hz), all
show markedly increased activation corresponding to the fricative /s/ in the word "star" (at
~2.3s). Conversely, the energy in the vowel sound /a/ in "star" (at ~2.5s) predominantly acti-
vates a group of low-mid frequency channels plotted in blue (~below 1000 Hz). This similarity
in the pattern of co-activation across groups of spectral channels supports the view that there is
significant redundancy in this high-dimensional spectral representation of the speech signal.
That is, the major patterns of activation elicited by speech sounds could be adequately captured
by a smaller number of more widely-spaced spectral bands, which are designed to reflect the
core spectral content of different speech sounds. So, in the previous example, the 6 spectral
channels (CFs of 3912–6868 Hz) that were co-activated by the /s/ sound could theoretically be
replaced by a single spectral band spanning their combined bandwidth, whose activation pat-
tern would then be the weighted sum of the original 6 channels. The aim of the first spectral

Table 3. Acoustic parameters for the three CDS corpora used for PCA analysis (Corpus 1) and for model evaluation (Corpora 2 & 3). Each cell
shows the mean value across all speakers, with the standard deviation across speakers in brackets below. Note that the speakers of Corpora 1 & 3 are all
female, but Corpus 2 included 1 male speaker.

Corpus Max Intensity (dB SPL) Mean Intensity (dB SPL) Max Pitch (Hz) Mean Pitch (Hz)

CDS Corpus 1 (n = 6, all F) 79.4 (4.7) 57.0 (4.7) 470.9 (34.6) 200.4 (12.4)

CDS Corpus 2 (n = 3, 1M 2F) 83.3 (3.2) 61.1 (2.5) 394.1 (46.1) 168.8 (26.3)

CDS Corpus 3 (n = 6, all F) 76.0 (4.6) 59.6 (4.7) 409.4 (30.1) 203.4 (11.9)

ADS (n = 6, all F) 75.7 (6.0) 55.3 (5.5) 427.6 (30.8) 169.0 (8.5)

doi:10.1371/journal.pone.0144411.t003
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dimensionality reduction (PCA) exercise is to identify the appropriate number and spacing of
this smaller set of non-redundant spectral bands, using co-modulation in the high-dimensional
ERBN representation as the basis.

(b) Generation of High Dimensional Representation of Temporal (Rate) Modulation.
Applying a similar logic to the temporal modulation rate domain, patterns of co-activation can
be identified from a high-dimensional representation of speech modulations at different tem-
poral rates, and used to derive a smaller number of modulation rate bands that characterise the

Fig 1. Signal processing steps prior to Spectral PCA. The original acoustic signal (a) is passed through
an ERBN-spaced filterbank, yielding a set of high-dimensional spectral channel outputs (b). The envelope is
extracted from each spectral channel output using the Hilbert transform (c), and these envelopes are entered
into the spectral PCA to identify patterns of covariation across spectral channels.

doi:10.1371/journal.pone.0144411.g001

Fig 2. 28 spectral-channel (high-dimensional) envelope representation of the nursery rhyme sentence
"Twinkle twinkle little star". The bottom panel (grey) shows the original sound pressure waveform of the
sentence, where the x-axis indicates time and the y-axis indicates signal amplitude. The top panel shows the
corresponding high-dimensional set of 40 Hz low-pass filtered Hilbert envelopes. The envelopes for the 28
ERBN-spaced spectral channels are plotted upwards in order of increasing acoustic frequency, where each
coloured line indicates a different spectral channel (i.e. blue = low frequency, red = high frequency). The
vertical height of each coloured line indicates the amplitude of the envelope at each point in time.

doi:10.1371/journal.pone.0144411.g002
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major timescales at which speech sounds vary. The high-dimensional representation of modu-
lation rate patterns in speech was constructed in 3 steps (see Fig 3). First, the raw acoustic sig-
nal was filtered into the small number (5) of spectral bands that were identified in the spectral
PCA analysis. Next, the Hilbert envelope was obtained for each of these spectral bands. Finally,
the 5 spectral band envelopes were each passed through a finely log-spaced, 24-channel modu-
lation filterbank, spanning 0.9–40 Hz, resulting in 5 sets of 24 modulation rate-filtered enve-
lopes. The parameters of the modulation filterbank are detailed in S2 Appendix. The PCA
analysis to identify patterns of co-activation across modulation rate channels was then con-
ducted separately for each of the 5 spectral bands. For this PCA exercise, only the power of the
modulation-rate envelopes was used. This was because the rate-filtered envelopes were effec-
tively sinusoids at different frequencies whose oscillatory phases were not aligned in time, and
therefore had an artificially low correlation to each other (on average<0.1). When the enve-
lopes were entered whole into a PCA analysis, this low correlation across modulation rates
meant that the first few principal components were weak, only accounting for ~35% of the
total variance in the data. Since we were primarily interested in patterns of co-activation (i.e.
changes in power) across different modulation rates, rather than in patterns of temporal syn-
chronisation (i.e. alignments in phase), phase information was discarded, and only the power
of the modulation-rate envelopes was used in this PCA analysis.

Principal Components Analysis (PCA) to Derive the Spectro-Temporal
Banding Structure of the S-AMPHModel
A separate principal components analysis was conducted for each speech sample in Nursery
Rhyme Corpus 1 (44 nursery rhymes x 6 speakers), taking the 28 spectral channels or 24 mod-
ulation rate channels as variables, and the individual datapoints in the filtered envelopes

Fig 3. Signal processing steps prior to Temporal (rate) PCA. The original acoustic signal (a) is passed
through a low-dimensional spectral filterbank, yielding a small set of core spectral band outputs, (b). The
parameters of the low-dimensional spectral filterbank were determined in the prior Spectral PCA procedure.
The envelope, (c), is extracted from each spectral band output using the Hilbert transform. Each envelope is
further passed through a high-dimensional modulation filterbank, yielding a set of high-dimensional
modulation rate envelopes, (d). This rate-filtering is performed for each spectral band envelope, but for
simplicity, only the modulation rate envelopes from a single spectral band are shown in this figure. Finally, the
power profiles of the modulation rate envelopes (bold blue line) are entered into a temporal (rate) PCA to
identify patterns of covariation across modulation rates.

doi:10.1371/journal.pone.0144411.g003
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(downsampled to 1050 Hz) as observations. It should be noted that the filtered spectral and
temporal modulation envelopes are time series data, and could contain strong temporal depen-
dencies. Therefore, individual datapoints may not be truly independent observations, as
assumed by the PCA procedure. That is, the value of the observed data, x, at timepoint t (i.e. xt)
is correlated to some degree to its value at the preceding timepoint (x t-1), as well as to the n
timepoints before (x t-n). In general, the strength of this temporal correlation decreases as the
lag (the value of n) between the two timepoints increases. However, Jolliffe [49] notes that
"when the main objective of PCA is descriptive, not inferential, complications such as non-inde-
pendence do not seriously affect this objective" (p.299), and often, no special account is taken of
dependence between observations. In the current analyses, our aim was descriptive rather than
inferential—we sought to identify major patterns of covariation across spectral or modulation
rate channels, rather than to make precise statistical comparisons of the eigenvalues or eigen-
vectors of the resulting principal components. Indeed, in a preliminary spectral PCA analysis,
we found that the loading patterns we obtained were broadly similar whether we used all data-
points (separated by ~1 ms), or only a subset of datapoints that were separated by 250 ms or by
500 ms (and therefore had a lower temporal correlation). Thus, for the current analysis, we
included all envelope datapoints and did not perform any correction for temporal dependency.
In each Spectral PCA, the 28 spectral channels were entered as separate variables, and the
results of the PCA yielded a total of 28 principal components. Only the top 5 principal compo-
nents were considered in the further analysis of loading patterns (described later), as these
cumulatively accounted (on average) for over 65% of the total variance in the original signal.
For each modulation rate PCA, the 24 modulation-rate channels were taken as separate vari-
ables. Moreover, each of the 5 spectral bands was also analysed separately (i.e. 5 PCAs were
conducted per sample). Each PCA yielded a total of 24 principal components, of which only
the top 3 were considered for further analysis, as these already cumulatively accounted (on
average) for over 70% of the total variance in the original signal.

(a) Rectification of PC Loading Patterns. Each principal component (PC) had a different
loading pattern across the 28 (or 24) entered variables. For this exercise, only the pattern of
loadings was important and not the sign (positive or negative). Therefore, the absolute PC load-
ing values were used instead of the raw values. This 'rectification' of the component loadings
was done to avoid mutual cancellation in the subsequent averaging process. This cancellation
would occur when the loading pattern had an opposite valence across samples. In fact, a switch
in the valence of PC loadings can be created simply by rotating the eigenvector basis matrix by
180 degrees, which would not change the variance explained (eigenvalues). As such, the +/-
signs in component loadings are in effect arbitrary, and the relative pattern of loading across
channels is more important. The resulting rectified (absolute valued) loading functions allow
channel clustering patterns to be observed, but do not allow the computation of principal com-
ponent scores (which were not used in this analysis). The rectified loading patterns for each PC
were averaged across all samples, resulting in grand average loading patterns for each PC,
which were used in the next step of the analysis.

(b) Identification of peaks and troughs in PC loading. In the next step of the PC analy-
sis, peaks and troughs in the grand average rectified PC loading patterns were identified by
means of an automated peak-detection procedure in MATLAB ([50], 'findpeaks.m', see S1
Code for formal description). This function identifies local maxima (peaks) of the input data,
defined as a data sample that is larger than either of its neighbouring samples. Troughs were
detected by first inverting the loading pattern (turning troughs to peaks) and then applying the
peak detection procedure to this inverted pattern. As we wanted to detect ALL the peaks and
troughs that were present in an unbiased manner, no minimum threshold for peak height was
set. However, a minimum peak-to-peak distance was set to ensure that there would be an
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adequate spacing between the resulting inferred spectral or modulation rate bands. For the
Spectral PCA, a minimum peak-to-peak distance of 2 channels was used. For the Temporal
(rate) PCA, a larger peak-to-peak distance of 5 channels was used as less frequent peaks/
troughs were observed in the loading pattern as compared to the Spectral PCA. Peaks in the
rectified loading pattern correspond to clusters of channels that collectively load strongly onto
a given principal component due to the strong co-modulation of their envelopes. We took
these peaks to indicate the core spectral regions and modulation timescales that characterise
speech sounds in our sample of child-directed speech. Troughs in the rectified loading pattern
were also of interest because they indicate boundaries between co-modulated groups of chan-
nels, and therefore mark the edges of the wider, non-redundant modulation bands that we
sought to identify in this dimensionality-reduction exercise. As these were troughs in the recti-
fied loading patterns, they could have arisen from sign changes in the original loading patterns
(e.g. crossings from positive!negative or negative!positive that become inflections after rec-
tification), or else from local drops in loading strength. Either way, troughs are consistent with
the abrupt change due to a transition from a spectral/rate region where all the channels carry
similar speech information, to one where different speech information is being transmitted
(e.g., voicing or frication).

(c) Determination of spectral and modulation rate banding. After all the peaks and
troughs in the rectified loading pattern had been identified for each of the top 5 (spectral) or 3
(modulation rate) PCs, the following set of criteria were applied to assess the location of spec-
tral and modulation rate bands respectively:

a. A spectral band was deemed to be present in a region where at least 2 of the first 5 PCs
showed a peak.

b. A modulation rate band was deemed to be present in a region where at least 1 of the first 3
PCs showed a peak, for at least 2 out of the 5 spectral bands.

The exact locations of boundary edges between spectral or modulation rate bands were
determined on the basis of the most consistent locations of flanking troughs for each group of
PC peaks that indicated the presence of a band. For example (see first figure in Results section),
for spectral PCA, if 3 of the 5 PCs all showed peaks at around 2500 Hz, this was taken to indi-
cate the presence of a spectral band in the region of 2500 Hz. The upper and lower boundaries
of this spectral band were then determined with reference to the flanking (adjacent) troughs
for each of the 3 relevant PC peaks. If the flanking troughs for all relevant PCs were located at
the same location (e.g. 3900 Hz), this was taken as a clear indication that the upper boundary
of the spectral band was located at 3900 Hz. However, if there was a discrepancy between the 3
PC trough locations (e.g. 2 PCs showed a trough at 3900 Hz, but 1 PC showed a trough at 3000
Hz), then the location with the majority of troughs would be used (i.e. 3900 Hz). So boundaries
were determined using the most consistent locations across all PCs.

The S-AMPH Computational Model for Acoustic-Phonological Mapping
1: Finding Syllables
The purpose of the S-AMPHmodel is to use the core modulation architecture of CDS (identi-
fied by PCA) to perform acoustic-phonological mapping—a computational process whereby
AM patterns and statistics are used to extract the primitive phonological units in the English
language (i.e. syllables, onset-rime units and prosodic stress patterns). The principles and algo-
rithms used by the model to find syllables are as follows:

For a spoken syllable, the point of highest energy typically corresponds to the vowel nucleus
[21,51]. During vowel phonation, the vocal tract is at its most open and permits the greatest
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airflow, while during the articulation of obstruent consonants in the onset and coda it is at its
most constricted. Thus, the acoustic waveform of a typical CVC (consonant-vowel-consonant)
syllable is shaped like a hill with its apex located within the vowel nucleus (describing its sonor-
ity profile), as shown in Fig 4. Meanwhile, less energetically-prominent (unstressed) syllables
are less reliably encoded in children's phonological representations of words (e.g. very young
children will say "NANA" (Strong-weak, or “S-w”) instead of "ba-na-na" (weak-Strong-weak,
or "w-S-w"); [52–53]).

Fig 4 shows that local peaks in syllable-rate modulations (i.e. peaks in the Syllable AM) map
closely to syllable vowel nuclei. As expected, each monosyllable generally elicits a single large
Syllable AM peak (although there are exceptions, discussed later). Moreover, the single highest
Syllable AM peak out of all the spectral bands (indicated with black dots) consistently falls
within the vowel nucleus, approximately at the point of highest amplitude in the acoustic wave-
form. However, there are important caveats to note. First, across the 4 different words, different
spectral bands yield the highest Syllable AM peak (e.g. here, either band 2 or band 3). There-
fore, the output from any single spectral band will not provide robust syllable location across
all possible words. The model needs a principled way to weight and select the most appropriate
spectral band for use in syllable vowel nucleus detection. Second, each Syllable AMmay occa-
sionally contain secondary peaks that correspond to other voiced segments within the syllable,
such as the /m/ in "map" (top right plot, red line has 2 peaks). The presence of these secondary
peaks undermines the assumption of 1:1 mapping between Syllable AM cycles and syllable
units (vowel nuclei), and could lead to spurious findings in the S-AMPHmodel. Therefore, a
principled way to screen out these irrelevant (i.e. not vowel-related) secondary peaks in the Syl-
lable AM is required. The following computational procedure has 3 steps, detection, ranking
and selection, and includes safeguards to address the problem of secondary peaks.

(a) Candidate Peak Detection. First, all the Syllable AM peaks across the 5 spectral bands
are identified using an automated MATLAB peak detection algorithm ([50], 'findpeaks.m', see
S1 Code for formal description), resulting in a large pool of candidate peaks. Examples are
shown in the top half of Fig 5. This peak detection algorithm allows the listener to take into
account variations inmodulation depth and speaking rate via two parameters. Variations in
modulation depth are accounted for by z-scoring each Syllable AM, and then setting the mini-
mum peak height (MPH) for peak detection at +0.5 standard deviations. Variations in speaking
rate are accounted for by setting the minimum peak-to-peak distance (MPD) at 60% of the syl-
lable period (duration) for each sample. The syllable period is estimated on a sample-to-sample
basis by applying a discrete Fourier transform, computed with a MATLAB fast Fourier trans-
form algorithm ([50], 'fft.m', see S1 Code for formal description) to each Syllable AM and then
determining the modulation frequency component with the highest power. This was based on
the assumption that the main peak in the modulation spectrum of speech, which typically
occurs ~3–5 Hz, corresponds to the energy of uttered ADS syllables [21]. Therefore the peak
modulation rate of the Syllable AM should indicate the main syllable rate of the utterance. For
example, if the largest frequency component identified in the Fourier analysis is 3 Hz, the MPD
for the sample would be 0.6 x (1000/3) = 200 ms.

(b) Candidate Peak Ranking. In the second step, the large pool of candidate AM peaks is
reduced, and peaks are ranked in order of vowel likelihood according to the root-mean-square
(RMS) power of their spectral band of origin. Since English vowels are voiced, it follows that
the spectral band with the highest power should also be transmitting the most vowel energy.
Thus, Syllable AM peaks arising from this highest-powered spectral band should be the most
likely to correspond to syllable vowel nuclei (i.e. have the highest vowel likelihood). However,
the main frequency of vowel energy could be different for different speakers, and for different
samples. Moreover, even within the same sample for the same speaker, not all of his or her
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Fig 4. Acoustic waveforms and corresponding Syllable AMs for 4 different CVC syllables. The
syllables are: "cap" (top left), "map" (top right), "nib" (bottom left) and "pan" (bottom right). For each word, its
acoustic waveform is shown in black, and the Syllable AMs from spectral bands 2,3 & 4 are overlaid as
coloured lines. The vertical dotted lines in each plot indicate the manually-located boundaries between the
onset, vowel nucleus and coda. Note that for each word, the highest Syllable AM peak (point of greatest
energy) falls within the vowel nucleus, as indicated with black dots. However, the spectral band with the
highest Syllable AM peak varies across words. For example, for "cap" and "map", it is spectral band 3 (700–
1750 Hz, green) which carries the strongest peak. For "nib" and "pan", it is spectral band 2 (300–700 Hz, red)
which carries the strongest peak.

doi:10.1371/journal.pone.0144411.g004

Fig 5. Example of Syllable AM peak detection and evaluation. The example shows the trochaic nursery
rhyme sentence "Jack and Jill". (Top). The Syllable AMs from spectral bands 1–5 are each plotted in
separate rows in different colours. The original pool of candidate peaks that were detected in these 5 AMs are
shown as coloured dots. The vertical dotted lines indicate the actual (manually-annotated) location of syllable
vowel nuclei in the sentence.(Bottom) Results of the peak evaluation procedure. The Syllable AMs from 3
power-ranked primary (Band #2), secondary (Band #1) and tertiary (Band #3) spectral bands are overlaid on
the original acoustic waveform. The final selected Syllable AM peaks (= model-detected syllable vowel
nuclei) are shown as black dots. The actual syllable vowel nuclei in the utterance are shown as black
crosses. Notice that the Syllable AM peaks in the primary spectral band (#2, yellow) correctly correspond to
almost all the actual syllable vowel nuclei, with the exception of the syllable "to", whose vowel nucleus is
captured within the secondary spectral band (#1, red).

doi:10.1371/journal.pone.0144411.g005
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vowels will fall in the same spectral band due to variations in token type (e.g. /a/ vs /i/), or pro-
sodic stress. Thus, even lower-powered spectral bands could contain vowel energy. To address
these concerns, we determine the highest-powered spectral band individually for each speaker
and sample. Moreover, we retain the Syllable AM peaks from the top 3 highest-powered spec-
tral bands (not just the top 1 band) as potential correlates of syllable vowel nuclei, discarding
only the peaks from the two lowest-powered spectral bands. These top 3 spectral bands are des-
ignated accordingly as the primary band (highest RMS power), secondary band (2nd highest
RMS power) and tertiary band (3rd highest RMS power). This is shown in the bottom half of
Fig 5. Thus, the second step in the algorithm yields a reduced pool of candidate AM peaks,
each ranked as being either primary, secondary or tertiary in vowel likelihood (according to
their spectral band of origin).

(c) Candidate Peak Evaluation. In the final step, the power-ranked AM peaks are system-
atically evaluated for overlaps in timing to eliminate duplication and irrelevant peaks. Duplica-
tion occurs when there are multiple AM peaks across primary, secondary and tertiary bands
that correspond to the same syllable vowel nucleus. Irrelevant peaks are AM peaks that do not
correspond to a real syllable vowel nucleus. According to the S-AMPHmodel, the vast majority
of uttered syllable vowel nuclei should produce Syllable AM peaks in the primary spectral
band. However, a smaller number of syllable vowel nuclei will also generate Syllable AM peaks
in the secondary or tertiary spectral bands. To distinguish whether secondary and tertiary
peaks correspond to genuine outlying syllable vowel nuclei, or whether they are simply dupli-
cates, a temporal proximity criterion is applied. Syllables are uttered sequentially in time.
Therefore, secondary and tertiary AM peaks that correspond to outlying syllable vowel nuclei
should lie at some temporal distance from existing primary Syllable AM peaks, rather than
overlapping in time. Accordingly, in the model each secondary-ranked AM peak is temporally
compared to the existing set of primary AM peaks. Any secondary peak that lies within ±0.5
syllable-lengths of a primary peak (based on the estimated syllable rate for that sample, using
the estimation procedure described in the previous section on candidate peak detection) is
treated as a duplicate and discarded. The surviving secondary peaks are retained and added to
the set of primary peaks. Finally, the procedure is repeated by comparing each tertiary peak
against the existing bank of primary and any surviving secondary AM peaks. This evaluation
procedure yields the final set of Syllable AM peaks that are deemed to correspond to syllable
vowel nuclei in the utterance. In Fig 5, this final set of Syllable AM peaks are shown as black
dots in the bottom half of the figure. In this example, these model-detected Syllable AM peaks
correspond perfectly to the actual (manually annotated) syllable vowel nuclei in the utterance,
shown as black crosses in the figure.

The S-AMPH Computational Model for Acoustic-Phonological Mapping
2: Finding Onset-Rime Divisions within Syllables
Similar to the perceptual onset models by Pompino-Marschall [54] and Harsin [55], here we
use a modulation rate-of-change function within different spectral bands to model the onset-
rime division within syllables. We assumed that points on the Syllable AM where there was a
rapid rate of amplitude increase (i.e. a rapid rise time) corresponded to onset-rime divisions,
because there is typically a sharp increase in energy associated with the transition from a con-
sonant (onset) to a vowel (rime beginning). These sharp increases in amplitude were detected
by first computing the derivative (rate of change) of the z-scored Syllable AM, and then iden-
tifying peaks in this derivative function using MATLAB's automated peak detection algo-
rithm (using the same settings for minimum peak height and mean peak distance as for the
Syllable detection procedure). This procedure was performed for the Syllable AM in all 5
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spectral bands, and the resulting pool of identified onset-rime division peaks was passed
through identical serial ranking and evaluation procedures as described in Steps 2 & 3 of the
previous Syllable-finding procedure (which assess vowel likelihood and eliminate duplica-
tions respectively). Note that we did not utilise the Phoneme AM to extract the onset-rime
division, as empirical data suggest that phoneme awareness in children is a product of learn-
ing to read [1,2,4].

The S-AMPH Computational Model for Acoustic-Phonological Mapping
3: Determining the Prosodic Strength of Syllables
Finally, we focus on how the Stress-Syllable AM phase relationship may be used to compute
the prosodic prominence of syllables in an utterance. We propose a Prosodic Strength Measure
(PSM) which transforms the Stress-Syllable AM phase relationship into an empirical measure
of whether a given syllable is prosodically-strong ('S') or weak ('w'). By computing the PSM for
each syllable, the overall rhythm pattern of an utterance may be revealed.

(a) The Prosodic Strength Measure (PSM). In the AM hierarchy, daughter tiers are
modulated in amplitude by parent tiers. Consequently, the amplitude (or loudness) of a given
Syllable AM cycle will depend on the modulation that is imposed by its parent Stress AM
cycle. If the Stress AM is at a peak (i.e. 0π radians phase), it follows that syllables occurring
during this peak phase will receive stronger modulation and therefore be more prominent.
Conversely when the Stress AM is at its trough (-π/+π radians phase), syllables occurring at
this trough phase will receive less modulation and be less prominent. To test this assumption,
the Stress AM phase distribution for known 'Strong' and 'weak' syllables was computed using
one of the metronome-timed prosodic templates from Corpus 2, as produced by 2 native
English speakers (1M, 1F). The speakers repeated the nursery rhyme "Jack and Jill went up the
hill to fetch a pail of water, Jack fell down and broke his crown, and Jill came tumbling after" in
time to a 3-Hz metronome beat using trochaic patterning. This template was chosen as the
trochaic pattern occurs most frequently in English nursery rhymes [26], and utterances fol-
lowing this pattern should contain an equal number of 'Strong' and 'weak' syllables (i.e. a
numerically balanced sample). The syllable vowel nuclei in both utterances were then manu-
ally located using Praat software [46], and each vowel's corresponding Stress AM phase was
computed. The resulting Stress phase distribution obtained for Strong and weak syllables is
shown in Fig 6. As expected, the vast majority of 'Strong' syllables occurred near the oscillatory
peak of the Stress AM (~0π radian), with the highest occurrence at around -0.1π radians. By
contrast, 'weak' syllables tended to occur more often near the oscillatory trough of the Stress
AM (~-π/+π radian).

To accurately capture this probabilistic distribution of 'Strong' versus 'weak' syllables with
regard to Stress AM phase, the PSM function should have a shape where it assigns maximum
prosodic prominence (i.e. 1) at around -0.1π radian, and minimum prominence (i.e. 0) at ~-π/
+π radian. As the exponential probability density function (PDF) is unimodal, symmetric, and
has a convex shape, it was used for this purpose. To compute the PSM, the absolute instanta-
neous Stress AM phase value of the Syllable AM peak was taken, shifted by 0.12π radians (to
reflect the shifted peak in the Stress AM phase distribution of strong syllables), and the corre-
sponding probability under an exponential PDF with a μ of 1 was taken. Thus, PSM values
range from a minimum of 0 (= lowest likelihood of a strong syllable) to a maximum of 1 (=
highest likelihood of a strong syllable). To reflect the relatively narrow spread of Stress AM
phase values occupied by 'Strong' syllables in the previous analysis, we estimated that syllables
achieving PSM values of at least 0.4 would be considered 'Strong', whilst those achieving PSM
values under 0.4 would be considered 'weak'.
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Evaluation Criteria for S-AMPH Acoustic-Phonological Mapping
Accuracy
The accuracy of acoustic-phonological mapping at each phonological level (syllable, onset-
rime and prosodic stress) was assessed using signal detection theory, which computes both the
detection (hit) rate, as well as the false alarm rate of the model.

(a) Syllable Finding Performance. A 'hit' was recorded when a Syllable AM peak that was
selected by the model lay within +/- half the mean syllable length (for that sample) of the real
manually-annotated syllable vowel nucleus. A 'miss' was recorded when a manually-annotated
syllable vowel nucleus failed to correspond to any Syllable AM peak that was selected by the
model. A 'false alarm' was recorded when a Syllable AM peak that was identified by the model
failed to correspond to any manually-annotated syllable vowel nuclei. A ‘correct rejection’ was
recorded when a Syllable AM peak that did not correspond to a syllable vowel nucleus was cor-
rectly eliminated or ignored by the model. To compute the number of correct rejections, an
estimate of the total number of 'spurious peaks' that did not correspond to a real syllable vowel
nucleus was required. This spurious peak estimate was generated by detecting all possible
peaks in the sample by setting no criteria on the mean peak height or distance (i.e. any point
that was higher than its surrounding neighbours was included), dividing this total peak number
by 5 (to normalise for the 5 Syllable AMs across the 5 Spectral bands), and subtracting the
number of manually-annotated syllable vowel nuclei from this normalised peak number.
Finally, the number of correct rejections was computed by subtracting the number of false
alarms from the spurious peak estimate.

(b) Onset-Rime Division Performance. A 'hit' was recorded when an onset-rime division
that was identified by the model lay within +/- 30 ms of the real manually-annotated onset-
rime division. A 'miss' was recorded when a manually-annotated onset-rime division failed to
correspond to any onset-rime division that was identified by the model. A 'false alarm' was
recorded when an onset-rime division that was identified by the model failed to correspond to
any manually-annotated onset-rime division. A ‘correct rejection’ was recorded when a Syllable
AM derivative peak that did not correspond to an actual onset-rime division (i.e. a spurious

Fig 6. Distribution of instantaneous Stress AM phase for 'Strong' (red) and 'weak' (blue) syllable
vowel nuclei. The example shown is for the trochaic-patterned nursery rhyme sentence 'Jack and Jill', and
results are computed over the pooled syllable vowel nuclei from 2 speakers. The x-axis indicates the
instantaneous Stress AM phase of the syllable vowel nuclei, binned into 17 equal phase bins between -π and
+π radians. The curve below shows the equivalent oscillatory shape of the AM phase values on the x-axis.

doi:10.1371/journal.pone.0144411.g006
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peak) was correctly eliminated or ignored by the model. As before, to compute the number of
correct rejections, an estimate of the total number of spurious peaks that did not correspond to
a real onset-rime divisions was required. This spurious peak estimate was generated by detect-
ing all possible peaks in the Syllable AM derivative function by setting no criteria on the mean
peak height or distance (i.e. any point that was higher than its surrounding neighbours was
included), dividing this total peak number by 5 (to normalise for the 5 Syllable AMs across the
5 Spectral bands), and subtracting the number of real onset-rime divisions from this normal-
ised peak number. Finally, the number of correct rejections was computed by subtracting the
number of false alarms from the spurious peak estimate.

(c) Stress-Detection Performance. In the stress-detection exercise, syllables were assigned
either a 'Strong' or 'weak' status, using the Prosodic Strength Measure (PSM) described previ-
ously. For the timed CDS sample, the threshold PSM value used for assigning a 'Strong' status
was 0.4, which produced excellent results. However, for the untimed CDS samples, a range of
PSM threshold values was tested, to see which value would yield the most optimal results. The
results of PSM threshold assessment are shown as an ROC curve in Figure A of S5 Appendix. It
should be noted that the value of the PSM threshold that is used for 'Strong' stress assignment
affects the trade-off between the number of hits and the number of false alarms achieved by the
S-AMPHmodel. If the PSM threshold is high, only very strongly-stressed syllables will be
assigned a 'Strong' status, leading to fewer hits but also fewer false alarms. Conversely, if the
PSM threshold is very low, stressed syllables will be detected very well (i.e. a high hit rate), but
some unstressed syllables may be incorrectly assigned a 'Strong' status as well (i.e. a high false
alarm rate).

'Hits' were defined as prosodically-stressed syllables that were correctly assigned a 'Strong'
status. 'Misses' were defined as prosodically-stressed syllables that were incorrectly assigned a
'weak' status. 'False alarms' were defined as unstressed syllables that were incorrectly assigned
a 'Strong' status. 'Correct rejections' were defined as unstressed syllables that were correctly
assigned a 'weak' status. For this exercise, only correctly identified syllable peaks were included
in the analysis (i.e. 'hits' from the previous syllable-finding exercise). This was done so that the
effectiveness of prosodic stress detection could be evaluated independently of the model's suc-
cess in identifying syllables.

Results

Spectral and Modulation Rate (Temporal) PCA Analyses for the
Dominant Spectro-Temporal Modulation Architecture of Child-Directed
Speech
The aim of these analyses was to derive a low-dimensional representation of the core spectro-
temporal modulation architecture of child-directed speech. Accordingly, Principle Component
Analysis (PCA) was adopted as our method of choice for dimensionality reduction, and the
PCA procedure was applied separately for (1) spectral and (2) modulation rate (temporal)
dimensionality reduction respectively. In each dimension (spectral and rate), the procedure was
equivalent to finding bands of acoustic frequencies or modulation rates in which the energy
changed in a similar way over time (i.e. co-modulation). For both PCA exercises, a high-dimen-
sional speech representation (i.e. a high number of audio frequency or modulation rate chan-
nels) was used as the input substrate, and the rectified loading patterns of the derived principle
components (PCs) were used to identify patterns of covariation between the input channels (see
Methods for explanation). The PCAmethod has long been used for dimensionality reduction in
speech studies (e.g. [56–57]). However, unlike a typical PCA analysis, here the key outcome of
interest was not the component scores, but the component loadings. Component loadings
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indicate the underlying patterns of correlation between channels. By analysing the patterns of
component loading across the channels in a high-dimensional representation, we reasoned that
one should be able to identify groups of adjacent channels that belong to the same core band of
spectral or temporal modulation.

Spectral PCA. Fig 7 shows the grand average rectified loading patterns for the five princi-
pal components arising from the spectral PCA conducted with the Nursery Rhyme Corpus 1
(see Methods), averaged across all 6 speakers. For more detail on other aspects of the spectral
analysis, please see S3 Appendix, which shows each individual speakers' rectified loading pat-
terns for the spectral PCA, and S2 Appendix, which details the root-mean-square (RMS)
power and cross-correlation across spectral channels. In Fig 7a, the peaks and troughs that
were automatically identified for each PC are overlaid as blue diamonds (peaks) and red circles
(troughs). In the figure, lower numbered PCs that account for more variance are shown in
darker, thicker lines. As a control, we carried out an identical PCA analysis on a generated cor-
pus of white noise surrogates that were matched in length to each stimulus in the CDS corpus.
The grand mean rectified loading patterns obtained for this control analysis using white noise
surrogates are shown in Fig 7b.

PC1: The first principal component (PC1) accounted for, on average, 30.4% of the total vari-
ance in the data. Fig 7a shows that PC1 (the thickest line) had a relatively low but even pattern
of loading, which was highest in the mid-frequency range (~1000–4000 Hz). As may be clearly
observed, the first PC reflects the mean correlation between spectral channels. Its rectified load-
ing pattern was virtually identical to that of the mean correlation coefficient between each spec-
tral channel and all the other spectral channels (plotted as a dotted green line). This similarity
between the rectified loading pattern of PC1 and the average correlation between channels sug-
gests that the PCA process is successful in drawing out some meaningful statistical relation-
ships that are present within the modulation data. Two peaks (~250 Hz, ~3000 Hz) and 1
trough (~375 Hz) were identified from the loading pattern of PC1. However, these were not
the sharp reversals in loading pattern that we sought, which would indicate transitions between
core bands of spectral energy. Consequently, we considered PC2.

PC2: The second principal component (PC2) accounted for, on average, 16.1% of the total
variance in the data. Unlike PC1, PC2 showed a more distinct loading pattern of peaks and
troughs, with 3 prominent peaks at acoustic frequencies of ~200 Hz, ~1000 Hz and ~5000 Hz
respectively. The frequency of these 3 peaks suggests that they might possibly correspond to
speech features such as fundamental frequency, voicing and frication respectively. Thus, PC2
provided evidence for the potential existence of at least 3 core spectral bands in the CDS data.

PC3: The third principal component (PC3) accounted for, on average, 7.6% of the total vari-
ance in the data. The loading pattern of PC3 provided the most convincing evidence for the
existence of spectral banding. There were 5 distinct peaks identified at acoustic frequencies of
~200 Hz, ~500 Hz, ~1000 Hz, ~2500 Hz, and ~5000 Hz respectively. Peaks 1, 3 and 5 occurred
in identical locations to the 3 peaks previously observed in PC2, corroborating the evidence for
3 spectral bands at these 3 spectral locations. In addition to peaks, PC3 also showed 4 distinct
troughs at acoustic frequencies of ~300 Hz, ~700 Hz, ~1750 Hz, and ~4000 Hz respectively,
which indicated the potential boundaries between up to 5 spectral bands. Therefore, PC2 and
PC3 collectively provided evidence for at least 3 spectral bands (~200 Hz, ~1000 Hz, ~5000
Hz), with PC3 additionally suggesting the existence of a further 2 spectral bands at ~500 Hz
and ~2500 Hz respectively.

PC4 & PC5: Principal components 4 & 5 (PC4 & PC5) accounted for, on average, 6.0% and
5.3% of the total variance in the data respectively. The rectified loading patterns for these two
PCs were highly similar, showing the strongest loading at low acoustic frequencies. Like PCs 1,
2 and 3, PCs 4 & 5 also showed peaks in loading at ~200–250 Hz, corroborating the evidence
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for a spectral band in this region (potentially corresponding to the fundamental frequency in
speech). Given that PC3 had suggested the potential existence of 2 spectral bands at ~500 Hz
and ~2500 Hz, we were particularly interested in whether PCs 4 & 5 would corroborate this. As
may be seen from Fig 7a, PC4 did indeed show a peak at ~400 Hz, while both PCs 4 & 5 showed
small peaks at ~2000 Hz. It is possible that these two additional spectral bands at ~500 Hz and
~2000–2500 Hz could correspond to formant energy (e.g. F1 & F3).

Thus, following our criteria (see Methods), we had indeed obtained sufficient evidence for
the presence of 5 core spectral bands in the spectral modulation data, with at least 2 out of 5
PCs showing peaks in each of these 5 spectral regions. We then determined the upper and
lower boundaries for each of these 5 spectral bands using the troughs in PC3 (which had
shown 5 distinct peaks and 4 distinct troughs), whose locations coincided with the troughs in
several other PCs. Table 4 provides a summary of the 5 spectral bands that were identified, and
their respective frequency ranges. It is interesting to note that each spectral band comprises a

Fig 7. Spectral PCA loading patterns for CDS corpora (7a, top) and white noise surrogates (7b,
bottom). (7a) (Left y-axis) Grand average rectified loadings for the top 5 principal components arising from
the Spectral PCA of the CDS corpora, averaged across all speech samples from 6 speakers. The blue
diamonds mark peaks in loading and the red dots mark troughs in loading. On the basis of these peak and
trough patters (see text), 5 spectral bands are inferred, whose boundaries are shown as vertical dotted lines.
(Right y-axis) Grand average correlation coefficient between each spectral channel and all the other spectral
channels, plotted as a dotted green line. (7b) Grand average rectified loadings for the top 5 principal
components arising from the Spectral PCA of white noise surrogates of the CDS corpora, averaged across all
speech samples from 6 speakers. Note that there is no systematic pattern of peaks.

doi:10.1371/journal.pone.0144411.g007
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roughly similar number of the original ERBN -spaced (i.e. cochlear-spaced, [47]) spectral chan-
nels, suggesting that the 5 speech spectral bands are proportionately-scaled with respect to the
logarithmic frequency sensitivity of human hearing. That is, the distribution of spectral modu-
lation energy within the input speech signal is well-matched to the receiver characteristics of
the listener. There is also some evidence of a broadening of spectral bandwidths at mid-fre-
quencies, since spectral bands 3 & 4 each span a slightly larger number (7) of ERBN channels
compared to the other bands. These mid-frequency bands might be expected to transmit the
modulation patterns associated with energetically-rich vowel sounds, which are hyperarticu-
lated in child-directed speech (hence in our speech corpus), and thus occupy an expanded
spectral range.

It is important to note that the results we report here are inferred from the grand average
PC loading patterns, obtained by taking the mean of loadings across 6 speakers. However, it is
reasonable to expect that there will be some individual variation in peak and trough location
across different speakers. This individual variation is explored and described further in S3
Appendix. In summary, we find that there is highest consistency across speakers at low spectral
frequencies. In particular, the trough in loading that indicates a division between spectral
bands 1 & 2 at 300 Hz is consistently present across speakers. However, we find that there is
more individual variation at mid-to-high spectral frequencies.

Modulation Rate PCA. Fig 8 shows the grand average rectified loading patterns for prin-
cipal components 1–3 arising from the modulation rate PCA conducted for each of the 5 spec-
tral bands (determined in the previous Spectral PCA, see Table 4). In the figure, the 5 spectral
bands are indicated in different colours, while PCs 1,2 and 3 are indicated in bold, dashed and
dotted lines respectively. The peaks and troughs that were automatically identified for each PC
are overlaid as diamonds (peaks) and circles (troughs), coloured according to their spectral
band of origin. The left portion of the figure (a) shows the 3 PCs overlaid, while the right por-
tion of the figure (b) shows the same data, but with the PCs separated into subplots. Table 5
provides a summary of the location of the peaks and troughs detected for each PC, with further
detail and explanation provided in the following text. For each individual speakers' rectified
loading patterns for the modulation rate PCA, please see S3 Appendix.

PC1: Similar to what was observed in the spectral PCA, PC1 in this modulation rate analysis
reflected the global correlation between modulation rate channels (data not shown), which was
strongest at around the rates of 10–20 Hz across the 5 spectral bands. It is interesting to note
that this peak in modulation correlation strength does not occur in the same modulation range
as the peak in modulation power, which typically occurs at a much lower rate (~3–5 Hz for
ADS [21]; ~2 Hz for CDS [23]). Thus, the two modulation statistics (power and correlation)
could relate to qualitatively different aspects of the speech signal. As no troughs were detected
in PC1 (indicating potential boundaries between modulation rate bands), our analysis was cen-
tred primarily on PC2 and PC3.

Table 4. Summary of the 5 spectral bands indentified from PC loading patterns.

Spectral Band PC Peaks No of ERBN Channels Frequency Range (Hz)

Band 1 PC1 - PC5 4 100–300

Band 2 PC3, PC4 5 300–700

Band 3 PC2, PC3 7 700–1750

Band 4 PC3 - PC5 7 1750–3900

Band 5 PC2, PC3 5 3900–7250

doi:10.1371/journal.pone.0144411.t004
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PC2: The rectified loading pattern of PC2 clearly consisted of 2 strong peaks (~1.5 Hz and
~30 Hz) which were separated by a deep trough. However, the modulation rate of this trough
varied across different spectral bands. For spectral band 1, the trough occurred ~12 Hz,
whereas for higher frequency spectral bands 2–5, the trough occurred earlier at ~8 Hz. Thus,
this loading pattern clearly suggested the presence of at least 2 modulation rate bands, but the
boundary between the bands was unclear. Consequently, we sought clarification by examining
PC3.

PC3: Here, we observed some similarities to the loading patterns observed in PC2. For
example, almost all the spectral bands showed a peak in loading at ~30 Hz, and at least one
spectral band (2) similarly showed a slow-rate peak at ~1 Hz. However, unlike PC2, the loading
patterns for PC3 spectral bands 3 & 5 showed an additionalmid-rate peak at ~5 Hz. The flank-
ing troughs for this additional peak in spectral bands 3 & 5 occurred ~2.5 Hz and ~14 Hz
respectively, although spectral band 2 also showed a trough at ~12 Hz (similar to spectral band
1 for PC2).

Fig 8. Modulation rate PCA resulting loading patterns.Mean rectified loading patterns for the first 3
principal components obtained for spectral bands 1–5 in the modulation rate PCA, averaged over all speech
samples. In (a, left), the PC loading patterns for each spectral band are overlaid. In (b, right), the same
loading data is separated by PCs into subplots for clarity. For both (a) and (b), the 5 different colours indicate
the 5 different spectral bands. The linestyle (solid, dashed or dotted) indicates the PC number. Coloured
circles show local troughs in loading that indicate potential boundaries between modulation rate bands (also
marked on the x-axis with vertical dotted lines). The coloured diamonds show local peaks in loading that
indicate clusters of modulation rate channels that show strong covariance in temporal patterning. The colour
of each circle or diamond reflects its spectral band, following the main colour scheme.

doi:10.1371/journal.pone.0144411.g008

Table 5. Peak and trough locations for PC1-PC3.

Component (variance) Peak locations Trough locations(annotated with
vertical dotted lines in Fig 8)

PC1 (47.2%) Note: Reflects
global correlation

10–20 Hz (all bands) N.A.

PC2 (16.7%) ~1.5 Hz (all bands), ~30 Hz (all
bands)

~12 Hz (band 1), ~8 Hz (bands 2–5)

PC3 (9.5%) ~1 Hz (band 2), ~5 Hz (bands 3
& 5) ~30 Hz (all bands)

~2.5 Hz (bands 3 & 5), ~12 Hz (band
2), ~14 Hz (bands 3 & 5)

doi:10.1371/journal.pone.0144411.t005
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Thus, following our criteria for identification of modulation rate bands (see Methods), the
peaks from the loading patterns of PC2 and PC3 collectively pointed to the presence of 3 sepa-
rate modulation rate bands with boundaries at ~2.5 Hz and ~12 Hz respectively. However, the
pattern of troughs suggested that there could be an additional boundary within the second
(mid-rate) band, dividing this band into a lower sub-band (2.5–8 Hz) and an upper sub-band
(8–12 Hz) respectively. These boundaries are marked with vertical dotted lines in Fig 8.

The identification of 3 major modulation rate bands or modulation timescales in Nursery
Rhyme Corpus 1 fits well with theoretical proposals regarding the typical timescales of 3 major
phonological units in speech: stress feet (~2 Hz; [27]), syllables (~5 Hz; [21,36,51]) and onset-
rimes/phonemes (~20 Hz, [58–59]). This correspondence is shown in Table 2 and discussed
further in the Discussion. Accordingly, these 3 acoustic modulation rate bands are hencefor-
ward assumed to support the extraction of phonological units (prosodic stress, syllables and
onset-rime/phoneme units respectively). We hereafter refer to these 3 AM bands as the 'Stress
AM' (0.9–2.5 Hz), the Syllable AM (2.5–12 Hz) and the Onset-Rime/Phoneme AM (12–40
Hz). In the following study, we test the validity of assuming an acoustic-phonological corre-
spondence at these key temporal rates by applying the S-AMPH to 2 other CDS corpora (Nurs-
ery Rhyme Corpus 2 and Nursery Rhyme Corpus 3). Note that there is a close similarity
between the core modulation timescales of CDS and the core bands of oscillatory activity
observed in the human cortex, as shown in the far right column of Table 6.

Indeed, multi-time resolution models of speech processing (e.g. [34,36]) suggest that this
close matching between the timescales of speech and brain activity reflects a biologically-expe-
dient mechanism for the concurrent neural encoding or 'temporal sampling' of important
speech information at different timescales. Moreover, the upper and lower sub-bands within
the 'Syllable' band (modulation band 2) correspond well to the typical timescales of stressed vs
unstressed syllables (e.g. [21]:<6 Hz for stressed syllables, 6–20 Hz for unstressed syllables) as
well as to the timescales of content vs function words in infant-directed speech (e.g. [60]:<8
Hz for content words,>8 Hz for function words), where content words are more likely to
receive stress than function words. Thus, the emergent modulation statistics of CDS appear to
fit some core requirements for language learning in terms of extracting phonological and gram-
matical structure.

Resulting Spectral Amplitude Modulation Phase Hierarchy Model
(S-AMPH)
The Spectral Amplitude Modulation Phase Hierarchy Model (S-AMPH) model is based on a
low-dimensional representation of CDS spectro-temporal modulation architecture. Derived
from the combined results of the Spectral and Modulation Rate PCAs, this hierarchy consists
of 5 spectral bands (100–300 Hz; 300–700 Hz; 700–1750 Hz; 1750–3900 Hz; 3900–7250 Hz),
each containing 3 hierarchically-nestedmodulation rate bands (Stress AM: 0.2–2.5 Hz; Syllable

Table 6. Summary of the 3 modulation rate bands indentified from PCA.

Linguistic Unit Modulation Rate Band (Geometric
CF) in Hz

Neural Oscillatory Bands in
Hz

Prosodic Stress (Mod band 1) 0.9–2.5 (1.5) Delta: 1–3

Syllable (Mod band 2) Lower: 2.5–8 (4.5) Theta: 4–7

Upper: 8–12 (9.8) Alpha: 8–12

Onset-Rime/Phoneme (Mod
band 3)

12–40.0 (21.9) Beta: 13–25 Low Gamma:
25–35

doi:10.1371/journal.pone.0144411.t006
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AM: 2.5–12 Hz; Onset-rime/Phoneme AM: 12–40 Hz). The Matlab code for computing the
S-AMPH 5x3 AM hierarchy is available as S1 Code. This 5x3 representation of core CDS spec-
tro-temporal modulation structure is illustrated in Fig 9. In the spectral domain, the 5 core
spectral bands could correspond to speech features such as fundamental frequency, formant
structure, voicing or frication. In the temporal domain, the 3 major modulation rate bands
show close correspondences to the characteristic timescales of 3 major types of phonological
units: prosodic feet, syllables and onset-rimes.

To assess the generalisability of this 5x3 spectro-temporal banding structure to other types
of spoken content and speaking styles, an identical PCA analysis was carried out with 3 other
types of speech corpora, all obtained from the same 6 speakers. These additional corpora were
(1) Children's nursery rhymes read in an adult-directed manner; (2) Children's stories read in a
child-directed manner; and (3) Spontaneous adult-directed speech. The details and results of
the PCA analyses with these additional corpora are provided as S4 Appendix, which shows that
the 5x3 spectro-temporal banding structure (used in the S-AMPHmodel) is broadly conserved
across both adult-directed and child-directed speech, although there are different emphases in
different spectral and temporal regions for each speaking style. While the biological counterpart
of this model, the neuronal oscillatory hierarchy, has already been proposed as a neurophysio-
logical mechanism for parsing speech [33,34,36], there has not yet been a parallel acoustic dem-
onstration that this hierarchy is actually present in the speech signal. Accordingly, a crucial test
of the model's validity is whether it is able to act as an acoustic-phonological mapping frame-
work for the naive listener.

Principles of Acoustic-Phonological Structure Mapping by the S-AMPH
Model

General Principles of Acoustic-Phonological Structure Mapping. Our results suggest
that the core temporal modulation structure of CDS provides a hierarchy of AM patterns at 3
major timescales, ~ 2 Hz, 5 Hz and 20 Hz. Linguistically, this hierarchy could yield stress

Fig 9. Example of the 5x3 spectro-temporal representation of speechmodulation structure. (Left column) Original acoustic waveform for the word
"pan". (Middle column) 5-spectral band filtered signal with Hilbert envelopes from each spectral band overlaid in bold. (Right column) Final 5x3 spectro-
temporal representation. 3 modulation rate bands (Stress, Syllable & Phoneme) are extracted from each of the envelopes in the 5 spectral bands. Each
modulation rate band is plotted in a different colour.

doi:10.1371/journal.pone.0144411.g009
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patterns (stress feet or proto-words, ~2 Hz), syllables (~5 Hz), and onsets (here, typically a sin-
gle phoneme preceding the vowel nucleus, ~20 Hz). Accordingly, stress patterns, syllables and
onset-rime units can be described as acoustically-emergent phonological units that can be
parsed from the acoustic temporal structure of the AE via structure-mapping of the AM hierar-
chy by a naive listener. The S-AMPHmodel simulates this acoustic-phonological mapping
process using two core principles, one based on correspondences between AM cycles and pho-
nological units, and the other based on correspondences between oscillatory phase relation-
ships and prosodic strength.

Acoustic-Phonological Mapping: From AM cycles to phonological units. In the AM
hierarchy, each AM tier represents a different phonological grain size. These different grain
sizes are the stress foot (top AM tier, slowest rate ~2 Hz), the syllable (middle AM tier, middle
rate ~5 Hz), and the onset-rime unit, particularly here the onset (initial consonant or conso-
nant cluster, bottom AM tier, fastest rate ~20 Hz). These grain sizes may be inferred from the
different AMs because there is a direct physical correspondence between the characteristic
duration (timescale) with which each type of phonological unit is uttered, and the equivalent
modulation in energy produced by the utterance. For example, the typical duration of syllables
in English spoken ADS is ~200 ms [21,51]. As CDS is produced at a slower rate, mean syllable
durations are correspondingly longer, with estimates ranging from ~250 ms to ~350 ms [61–
62]. Thus, each uttered syllable typically produces a momentary increase in speech energy (i.e.
an AM) that lasts for around 200 ms (5 Hz, ADS) or 250–350 ms (~3.3 Hz, CDS). This corre-
spondence allows us to make a reverse inference from the observed pattern of AM activity to
the underlying phonological structure of the utterance. For example, it could be proposed that
each single AM cycle within each AM tier corresponds to the occurrence of a single phonologi-
cal unit at that grain size, so that a 1:1 mapping exists between AM cycles and phonological
units.

Acoustic-Prosodic Mapping: From AM oscillatory phase to prosodic strength (S-w).
The AM hierarchy is also capable of representing the prosodic prominence or strength of its
elements (i.e. Strong 'S' or weak 'w'). In a classic linguistic prosodic hierarchy [63–67], adjacent
units at each level alternate in relative prominence. That is, each unit (e.g. syllable) can be
either stronger or weaker than its neighbour, producing the characteristic strong-weak alterna-
tion that underlies English speech rhythm [68–69]. Thus, it is not the absolute amplitude of a
syllable that determines its strength, but rather its relative amplitude in relation to its neigh-
bours. To instantiate this concept of relativity, oscillatory phase is used as the computational
statistic. By taking only the phase series of an AM pattern, one is effectively left with the relative
pattern of amplitude change, disregarding any fluctuations in overall power. Thus, strong-
weak rhythmic alternation patterns can conveniently be expressed in terms of a series of oscil-
latory phase states. Here, we use the phase convention where +/-1π radian refer equally to the
oscillatory trough and 0π radians refers to the oscillatory peak. Thus, the trochaic [S,w] pattern
can be expressed in phase terms as [0π, +/-π], whereas the iambic [w,S] pattern is expressed as
[+/-π, 0π] (see Fig 10 for an illustration).

A second property of the prosodic hierarchy is that the prominence of units accrues in a
top-down manner due to hierarchical nesting [66–67]. Fig 10 shows the hierarchically-nested
prosodic structure for the word "Mississippi". In this example, the 4 component syllables are
nested within 2 stress feet, which in turn are nested within the whole word. One direct conse-
quence of nesting is that the prosodic prominence of nested lower-level units (e.g. syllables) is
governed by the prominence of parent units at a higher level in the hierarchy (e.g. stress feet).
In the AM hierarchy, this top-down hierarchical control of prominence is instantiated in a
scheme where the oscillatory phase of a slower AM governs the relative prominence of nested
cycles of a faster AM. For example, as indicated by dotted arrows in Fig 10, Syllable AM cycles
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that occur near the peak [0π] of the Stress AM are prosodically-strong, whereas Syllable AM
cycles that occur near the trough [+/-π] of the Stress AM are prosodically-weak.

Evaluation of S-AMPH Acoustic-Phonological Structure Mapping
The efficacy of acoustic-phonological structure-mapping by the S-AMPHmodel was evaluated
using 2 sets of CDS. The first was rhythmically-timed speech with a regular (isochronous) beat
pattern (Nursery Rhymes Corpus 2, see Methods), such as might be produced when parents
sing or play hand-clapping games with their children. The second was freely-produced but
child-focussed speech, such as parents might produce when telling nursery rhymes and stories
to their children (i.e. speaking in CDS without an external time-keeper; Nursery Rhyme Corpus
3, see Methods). Developmentally, it is plausible that deliberately-timed speech may contain
more strongly phase-locked hierarchical modulation patterning, which should enable better
extraction of phonological structure by naïve listeners (yielding a rhythmic benefit).

For the interested reader, S5 Appendix provides a detailed breakdown of the model's perfor-
mance. This Appendix shows the percentage of hits, misses, correction rejections and false
alarms computed for each phonological level (syllable, onset-rime and prosodic stress), for
each speech corpus separately (timed or untimed) and for each type of metrical patterning (bi-
syllable- or tri-syllable-footed). A summary of the key performance indicators (accuracy and
d') is shown in Table 7. Inspection of Table 7 shows that the accuracy of acoustic-phonological

Fig 10. Representation of the prosodic hierarchy as an AM hierarchy. The dotted arrows represent the
phase-relationships between nested units in the hierarchy, which indicate the prosodic prominence of
daughter units ('S' or 'w'). For example, the 'w-S' iambic pattern of the 2 stress feet within the word is given by
the phase relationship between the Stress AM and its upper parent tier, which takes the form [+/-π, 0π].

doi:10.1371/journal.pone.0144411.g010

Table 7. Summary performance of the S-AMPHmodel. The table shows accuracy of performance for acoustic-phonological mapping at each phonologi-
cal level for timed and untimed child-directed speech, and the advantage for timed-untimed CDS. The mean and standard deviation of the distance of the
models' estimates from their respective phonological targets is also included.

Timed CDS Untimed CDS Timed-Untimed

Syllable Accuracy 98.3% 81.8% 16.5%

d' 4.33 1.82 2.51

Distance from target (SD) 22.8 ms (21.4 ms) 7.52 ms (30.7 ms) 15.28 ms

Onset-Rime Accuracy 90.9% 77.6% 13.3%

d' 2.76 1.53 1.23

Distance from target (SD) -1.80 ms (10.9 ms) 1.45 ms (11.2 ms) -3.33 ms

Prosodic Stress Accuracy 94.8% 72.4% 22.4%

d' 3.46 1.21 2.25

doi:10.1371/journal.pone.0144411.t007
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mapping achieved by the S-AMPHmodel (averaging hits and correct rejection rates) exceeded
72% for onset-rime detection, syllable-finding and stress detection. The best performance was
observed for syllable-finding in timed CDS (98% accuracy, d' = 4.3), and the weakest perfor-
mance was observed for prosodic stress detection in untimed CDS (72% accuracy, d' = 1.2).
Notably, the model performed significantly better for deliberately timed speech than for
untimed speech in all cases (gains of between 13%-22%, see S5 Appendix for details of statisti-
cal tests). For timed speech,>90% accuracy was achieved for all phonological levels. For
untimed speech, between 72%~82% accuracy was achieved across the three phonological levels.
This difference is consistent with experimental evidence showing that the use of rhythmically-
regular speech (as in sung nursery rhymes and hand-clapping games) with children signifi-
cantly improves their phonological awareness [70–71]. In principle, therefore, the language
routines of early childhood could potentially increase the accuracy of the child's phonological
parsing by as much as ~15% (for syllables and onset-rime units) and by over 20% (for prosodic
stress patterns). However, it remains to be investigated whether young children can track and
use acoustic modulation patterns at a level comparable to adults [25,33]. Moreover, it is also
unknown whether these mechanisms would be effective in parsing less rhythmically-regular
forms of speech.

Discussion
In this paper, we developed a computational model, the S-AMPHmodel, to investigate the effi-
cacy with which a naive learner could perform acoustic-phonological structure-mapping using
only the modulation architecture and statistics of child-directed speech. We showed that the
core acoustic modulation structure and statistics of the amplitude envelope of CDS form an
inherent oscillatory hierarchy, whose statistics can be used to extract latent large-grain phono-
logical structure (stress patterns [stress feet or proto-words], syllables and onset-rime units) by
a process of structure-mapping with good accuracy (minimum of 70% across the three phono-
logical levels). Theoretically, this structure-mapping process is mediated by the automatic
entrainment (phase-locking) of endogenous neuronal oscillations to acoustic modulation pat-
terns in CDS (i.e. delta-to-Stress AM, theta-to-Syllable AM). The result is Acoustic-Emergent
Phonology, signal-driven parsing of CDS into emergent phonological units that could in princi-
ple provide the earliest building blocks for a young child's phonological system. Although it
remains to be shown empirically that young children can track and use these acoustic modula-
tion patterns as the S-AMPHmodel does, our modelling specifies biologically plausible devel-
opmental mechanisms that may contribute to the development of a phonological system by
young children. AEP theory also suggests an acoustic basis for linguistic descriptions of hierar-
chical prosodic structure in the English language [63–67].

AEP theory draws on emerging evidence that nested oscillatory hierarchies are relational
structures that characterise both sensory inputs (as demonstrated here for CDS) and neural
encoding mechanisms (as demonstrated by Poeppel [36], Gross [35]). Work with both primate
and human participants has demonstrated that endogenous neuronal oscillations within the
auditory cortex fluctuate on similar timescales to the modulation patterns in the speech signal
(notably delta, theta and gamma). Auditory neuronal oscillations are hierarchically-nested
through phase-phase and phase-power couplings [41,35–36]. We have also previously demon-
strated the perceptual utility of such oscillatory nesting between AM rates in the speech signal
[25]. We demonstrated a key role for delta-theta phase alignment in prosodic prominence.
When adults were asked to perform a rhythm discrimination task with degraded speech, they
showed perceptual sensitivity to the phase coupling/nesting between the Stress AM and the Syl-
lable AM, and used this hierarchical coupling to infer prosodic 'Strong'-'weak' stress patterns.
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Further investigations are now needed to determine whether the nested AM oscillations in the
speech signal are tracked rate-wise by nested neuronal oscillations in auditory cortex, and
whether the fidelity of this neural tracking predicts the accuracy of participants’ hierarchical
phonological parsing of the speech signal. We now compare the S-AMPH to other models, and
briefly assess the implications of AEP theory for children’s language development, for develop-
mental disorders of language, for the classification of languages by rhythm type, and for the
analysis of inherently rhythmic signals such as music.

Comparison with Other Models
The S-AMPHmodel follows a long tradition of computational models whose aim is to describe
the process by which listeners transform acoustic landmarks in the speech signal into distinc-
tive phonological features that support speech comprehension (e.g. [72]). In terms of syllable-
finding, the performance of the S-AMPHmodel compares favourably to that of other compu-
tational methods designed specifically for syllable detection. However, it should be noted that
these other models have only been implemented in adult-directed speech. Thus, whilst analo-
gies may be drawn between the performance of the S-AMPHmodel and these other computa-
tional models, direct comparisons may not be appropriate as these methods have not been
applied to child-directed speech nor has our new method been tested on adult-directed speech.
Nonetheless, the current AM peak detection method is, in principle, similar to that used by
Pfitzinger et al [73], who also used peaks in the low-pass filtered (~<10 Hz) envelope as candi-
dates for syllables. Pfitzinger et al [73] reported achieving accuracy rates of 87% and 79% for
read and spontaneous adult-directed speech respectively, where detection was deemed accurate
when the candidate syllable lay within 100 ms of the target. These percentages are not distant
from the S-AMPH accuracy rates of 98% and 82% for timed and untimed child-directed speech
respectively, using a similar criterion threshold of half a syllable length (varying between 70–
167 ms). More sophisticated supervised machine-learning methods (e.g. [74–75]) achieve simi-
lar syllable detection accuracy rates of ~88% for read speech. These mapping results with sylla-
bles support our proposal that the acoustic modulation structure of CDS naturally contains
strong acoustic cues for the extraction of large grain size phonology (Acoustic-Emergent
Phonology).

With regard to onset-rime detection, the most relevant computational models are those that
have been developed to detect the perceptual-centre (P-centre), or ‘moment of occurrence’ of
an auditory event in any sensory modality [76–77]. P-centres in speech are commonly associ-
ated with the beginnings of syllable vowel nuclei, or the onset-rime division [78–81]. The
P-centre of a sound is also its rhythmic centre. For example, when speaking the syllables
"SWEET" and "SEAT" in time to a regular metronome beat, one would align the nucleus of
their rimes ("-EET" and "-EAT") to time with the pacing beat, rather than their onsets ("SW-"
and "S"). Consequently, for any particular beat interval, one would have to begin saying
"SW-EET" earlier than "S-EAT" in order to ensure that both rimes were produced to coincide
with the metronome beat. Although the exact location of P-centres in individual syllables can
vary depending on the consonants that precede and follow the vowel nucleus (i.e. the phono-
logical characteristics of onsets and codas), it is generally agreed that acoustically, P-centres are
cued primarily by changes in loudness or signal amplitude [78–81]. Accordingly, attempts to
identify and model the acoustic correlates of P-centres in speech have focused on the speech
amplitude envelope.

For example, Howell [82–84] proposed a syllabic center of gravity model, in which the dis-
tribution of energy within the amplitude envelope was the key determinant of P-centre loca-
tion. Other models by Pompino-Marschall [54] and Harsin [55] make use of loudness
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functions or the rate-of-change of modulation in the envelopes of different spectral bands. The
approach we adopt here is similar to that by Pompino-Marschall [54] and Harsin [55],
whereby a modulation rate-of-change function is used to model the onset-rime division within
syllables (see Methods). It is difficult to compare the performance of the S-AMPHmodel in
onset-rime detection against that of existing P-centre models for two reasons. First, P-centre
models have primarily been tested on single isolated syllables or sounds, rather than on con-
nected speech (as was done here). To our knowledge, there have been no corpus-based assess-
ments of P-centre models. Second, P-centre models describe a perceptual phenomenon (the
subjective moment of occurrence of a sound) whereas the S-AMPH attempts to detect an
acoustic landmark (the onset-rime division) which is closely related to, but not synonymous
with, the P-centre of a sound. Nonetheless, a comparative assessment by Collins [85] on eight
different P-centre models using a varied database of 100 single short sounds (including musical
instruments, speech, song and sine tones) found that on average, the mean error per sound
over all 8 P-centre models was 65.3 ms. That is, on average, the models could only predict the
P-centres of ~50% of the stimuli (assuming that performance over stimuli was normally dis-
tributed) within 65 ms of their actual location (which was determined experimentally). By
comparison, the S-AMPHmodel located 91% of onset-rime divisions within 30 ms (for the
timed corpus, which was more similar to Collins' single short stimuli). Thus, we conclude that
the performance of the S-AMPHmodel compares favourably to that of existing P-centre
models.

In terms of mapping between acoustic and prosodic structure, the S-AMPHmodel per-
formed at a comparable level to other automatic stress transcription models. For example,
Silipo & Greenberg [86] tested a variety of models using amplitude, duration and pitch cues
where these cues were either used singly or in paired combination. Silipo & Greenberg [86]
reported that the best performance was obtained when both duration and amplitude cues were
used in combination, yielding correct identification of ~80% of stressed syllables and ~78% of
unstressed syllables in adult-directed speech. When amplitude cues alone were used, transcrip-
tion accuracy was ~64% for stressed syllables and ~65% for unstressed syllables. The 72% accu-
racy achieved by the S-AMPHmodel for untimed speech, using amplitude cues only, is thus
slightly better. Clearly, other acoustic cues such as duration and pitch are also available to chil-
dren, and would support the identification of prosodic stress in the speech signal. Nevertheless,
our modelling suggests that the AM statistics of the AE already allow listeners to identify over
70% (and potentially up to 95%) of the stressed and unstressed syllables in speech correctly,
even without other acoustic cues.

Prosodic Structure in CDS and Language Development
The AEP model fits well with cross-language data showing that prior to formal literacy instruc-
tion, pre-reading children already possess reflective awareness of phonological units at the
larger grain sizes of syllables and onset-rime units [1–2,87]. AEP theory demonstrates how this
explicit awareness could develop in part from emergent features of the acoustic signal of CDS.
Furthermore, AEP theory addresses a gap in the current literature, which is that there is cur-
rently no neural mechanistic description of how infants first acquire phonological knowledge.
Despite longstanding recognition of the importance of bootstrapping in early language learning
[52,88–89], AEP is the first theory to provide a statistical description of the precise temporal
properties of the speech signal that might support the extraction of phonological structure.
Thus, AEP theory potentially offers a significant advance in our understanding of the sensory/
neural mechanisms of early language acquisition and phonological development, and can be
extended to infants (e.g., [23]). By demonstration, we have used the S-AMPHmodel to analyse
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the temporal modulation patterns in infant-directed speech (IDS) as spoken live to typically-
developing infants at 7-, 9-, and 11-months of age [23]. Our S-AMPH analysis revealed that
compared to ADS, the modulation peak in IDS was shifted toward the slower (delta) modula-
tion rate (a “stress-shifted” pattern). This “stress-shifted” rhythmic profile should support
delta-rate neuronal entrainment to the speech signal by infants, which could be adaptive in
helping infants to locate word boundaries during early language acquisition. Electrophysiology
(EEG) reveals awareness of trochaic patterns by 4–5 months of age [90]. Nevertheless, it is
risky to compare oscillations and timed responses in infants and children with those of adults.
Further studies specifically testing AEP theory need to be performed with infants and children
in order to document the nature of these sensory-neural mechanisms.

Implications for Developmental Language Disorders
AEP theory demonstrates that the speech amplitude envelope contains vital acoustic structure
relevant to phonological parsing. Therefore, children with poor sensitivity to amplitude enve-
lope structure would be at a disadvantage during early phonological development. Such chil-
dren would be less efficient at detecting prosodic strength, at parsing syllables and at locating
onset-rime units in the speech input. Consequently the auditory organization of their mental
lexicons would be atypical, with the emergent phonological structure in the amplitude envelope
poorly represented [8]. This developmental description may capture the acoustic basis of devel-
opmental dyslexia [4]. In EEG studies the greatest perceptual difficulties in dyslexia occur with
slower rise times [91], while psychophysical studies show that whereas 9-year old children
without dyslexia can distinguish amplitude rise time differences of ~46 ms, 11-year-old chil-
dren with dyslexia reading at a 9-year old level have a threshold of ~114 ms [92]. Sensory diffi-
culties with slower rise times may explain why non-speech rhythm perception is also impaired
in children with dyslexia [93–94]. Children with specific language impairment (SLI) also show
rise time discrimination impairments and reduced prosodic sensitivity [95]. Since both devel-
opmental dyslexia and SLI are congenital disorders, infants at high genetic risk for developing
dyslexia or SLI should in theory already show impaired sensitivity to amplitude rise time as
well as atypical oscillatory mechanisms, particularly in the crucial delta (Stress AM) and theta
(Syllable AM) bands. This presents the possibility that impaired rise time discrimination and
atypical oscillatory activity could act as early biological markers for infants at-risk for develop-
ing later language disorders.

Cross-Linguistic Perspectives: AEP Theory and Rhythm Typologies
The acoustic basis of language rhythm typologies continues to be debated [96]. Our findings
suggest that rhythm typologies could be associated with the acousticmodulation statistics of
CDS that are learned during infancy and childhood. A core modulation statistic for the
S-AMPH is oscillatory phase. Phase-synchronicity is distinct from durational isochrony
because two oscillators can remain phase-locked (synchronised) even when they are stretched
or compressed in duration (e.g. as speakers slow down or speed up). When the Stress- and Syl-
lable-rate modulations in speech are phase-synchronised, the resulting percept is that of a regu-
lar rhythmic pattern of stressed and unstressed syllables [97], which confers high transitional
predictability to the utterance. Through language exposure, English-learning children’s percep-
tual systems may become hard-wired to expect and extract regularities in speech at these
stress-syllable timescales. Consequently, during adulthood, English listeners may impose a
framework of stress-syllable regularity when listening to speech, even though the speech signal
itself (i.e. ADS) does not contain strong temporal regularity. This could explain why English is
perceived to be regularly 'stress-timed', even though durational isochrony is absent from the
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(adult-directed) speech signal. By extension, the algorithms used in the S-AMPH could also
offer new perspectives on the rhythm typology of other languages. For languages with a differ-
ent rhythmic organisation, we might predict that the critical phase axis may not be the Stress-
Syllable AM axis identified here, but rather phase relations between faster AM rates, in line
with the phonological unit used by a particular language as the basic unit of rhythm. It is also
possible that in fact all human languages can be arranged along a continuum as being “more-
or-less stress-timed” [27]. In this case, the number and configuration of tiers within the AM
hierarchy that are used to specify rhythm should systematically predict the location of a given
language on this continuum.

The S-AMPHModel and Rhythmic Structure in Music
Language and music may result from general perceptual mechanisms that are neither music-
nor language-specific [69,98]. In principle, the application of spectral and modulation rate
PCAs to different types of music should therefore also reveal covert hierarchical structures of
the kind found here for the speech signal. Tapping a finger to a metronome beat, tapping one’s
foot to the beat of music, and musicians playing different instruments together in time all
depend on accurate perception and prediction of underlying rhythm. Different instruments
produce notes with different rise times (attack times, see [99]), hence musicians playing differ-
ent instruments who entrain together must phase-align the rise times of their notes in order to
keep accurate time. Slower temporal rates at the top of the AM hierarchy are more likely to
drive this mutual entrainment behaviour than faster temporal rates [97], and this is likely to
involve the delta rate (in music the rate of 1.67 Hz, or a 600 ms interval, is frequently desig-
nated the preferred or natural tempo [100]). The rhythmic structure of music and language are
aligned when we sing, and therefore training that assists children in being sensitive to the accu-
racy of this alignment should also help children to develop better phonological skills [70].

The S-AMPHModel and Neural Speech Encoding
The modelling also fits well with current neural models of speech encoding by adults
[32,34,36], as highlighted in the Introduction. Automatic neuronal entrainment mechanisms at
rates matching the temporal patterns in the AE (delta, theta, beta, gamma; see [35–36]) may
enable parsing of the speech signal by a signal-driven process of structure-mapping (mapping
of the acoustic hierarchy onto the oscillatory hierarchy). For example, Poeppel and colleagues
have demonstrated in adult MEG studies that theta oscillations phase-entrain to the peaks and
troughs in acoustic modulation patterning at the syllable rate, and the fidelity of this neuronal
entrainment predicts speech intelligibility [33]. Mechanistically, the beginnings of new phono-
logical units would typically be identifiable by prominent increases in the amplitude of the
signal (i.e. large rise times), which could function perceptually as auditory temporal edges
[35,101]. These edges would both delineate new auditory objects (e.g. rime units) and re-set
endogenous neuronal oscillations, enabling phase-alignment and neuronal entrainment.
Regarding studies with children, the S-AMPH suggests that delta-driven parsing may be
equally or more important for accurate speech encoding than theta-driven parsing. Indeed, we
have demonstrated neuronal entrainment in the theta and delta bands in children to syllables
produced rhythmically at a 2 Hz rate, and have also demonstrated atypical oscillatory delta
entrainment for children with dyslexia [102–103]. Neuronal entrainment to speech stimuli is
therefore present in childhood, and provides a sensory/neural mechanism for the extraction of
Acoustic-Emergent Phonology (AEP) by young listeners.
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Limitations of Current Model
Acoustic-Emergent Phonology theory has several limitations. First, the S-AMPHmodel does
not take into account the contribution of phonetic and phonotactic cues, or top-down lexical
effects, in emergent phonological development. Secondly, as the amplitude envelope is the
focus of AEP theory, any prosodically-relevant information that is present within the fine
structure of the signal (e.g. pitch accent cues) is not accounted for. As a result of these two limi-
tations, it is possible that AEP theory might underestimate children’s true capabilities in
extracting phonological information bottom-up from the speech signal. On the other hand, the
current model is based on a select corpora of nursery rhymes uttered by experienced female
early years educators, thereby comprising high-quality CDS. Thus it is at present unclear how
far the model may be generalised across other forms of CDS. It should also be noted that the
speech corpus used for the statistical modelling comprised of read (i.e. scripted), rather than
truly spontaneous child-directed speech (although a PCA analysis of spontaneous adult-
directed speech yielded similar spectro-temporal structure to read CDS, see S3 Appendix). It is
possible that mothers' (and fathers') utterances might differ subtly in temporal structure,
depending on whether the produced speech is scripted or part of natural conversation. Never-
theless, the nursery rhyme materials used in this study were chosen from popular children's lit-
erature, hence similar material would realistically be heard by the child at home and in nursery.
Furthermore, ongoing analysis of IDS shows that Stress-rate modulations dominate the modu-
lation spectrum even more in spontaneous speech to infants [23]. Hence the use here of
scripted speech may not exert strong effects. Further experimental research is clearly required
to evaluate the hypotheses put forward here, ideally across languages, to investigate these and
related issues in greater depth.

Finally, it should be noted that the focus of the S-AMPHmodel is on the parsing of phono-
logical units (i.e. where is a syllable?), rather than on the identification or discrimination of
these units per se (i.e. is this syllable "cat" or "cap"?). Consequently we primarily make use of
modulation patterns in the rate dimension (which specify units), rather than modulations in
the spectral dimension (which could specify features). Note also that even higher-order
(slower) AM tiers than used here can be present in adult-directed speech (e.g. corresponding to
phrases). In the spectral domain, the 5 core spectral bands could plausibly correspond to
speech features such as fundamental frequency, formant structure, voicing or frication. In
future versions of the model, featural computations could be included to yield a fully-fledged
phonological model of speech units as well as their distinctive features.

Conclusion
In summary, we show here that the AE of CDS can be described statistically in terms of an
acoustic AM hierarchy that would match the known neural oscillatory hierarchy. Rate-specific
and automatic neuronal entrainment to this acoustic hierarchy by infants and children would
enable automatic parsing of the speech signal, yielding a set of phonological primitives (Acous-
tic-Emergent Phonology). Social learning mechanisms and top-down processes could capitalise
upon these acoustic-emergent units to build a phonological system. In principle, social learning
mechanisms, language play and top-down (e.g. semantic and pragmatic) processing would
complement signal-driven parsing and facilitate the development of phonological representa-
tions that code prosodic structure, syllable boundaries and onset-rime information by pre-
school children, prior to the teaching of literacy. Individual differences in sensitivity to the AM
structure of speech would be expected to be associated with individual differences in children’s
phonological awareness, as is empirically the case [3,4,8]. Application of the S-AMPHmodel
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to CDS in languages other than English awaits further research. Such investigations would
enable a series of empirical tests of AEP theory.
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