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Abstract—Memristive devices, such as ReRAMs, are fast gain-
ing prominence for their low leakage power, high endurance
and non-volatile storage capabilities. ReRAM crossbar arrays
also found usage as platform for in-memory computing, par-
ticularly for data-intensive computations, due to its inherent
capability to perform stateful logic operations. Binary matrix
and vector operations arise in several applications that require
close interaction with the storage, such as Error Correction
Codes (ECC), approximate graph mining, and in general, diverse
big data applications. In this paper, we explore for the first
time, an efficient mapping of Binary Basic Linear Algebra
Subprograms (BiBLAS) onto hybrid CMOS-ReRAM crossbar
array. We investigate the impact of crossbar configurations on
the delay, and area of BiBLAS operations for various vector sizes.

I. INTRODUCTION

Binary matrix is a matrix with entries from the Boolean
domain B{0, 1}. Binary matrix computations are encoun-
tered across multiple application domains, such as, high-
performance computing [10], algebraic cryptanalysis [5], com-
binatorics and finite geometry data [22], clustering [14] and
in general large scale data analysis [23].

A notable use case is similarity search problem in the graph
theory. For similarity search, given a query graph q and a data
graph D, one needs to retrieve graphs in G that have similarity
distances greater than a specified threshold t in the data graph
D. Such a problem arises in several applications ranging form
bio-informatics to identification compounds in the chemical
database [10], [19]. Computationally intensive segment in the
similarity search problem includes matrix operations, where
matrices are essentially {0, 1}-valued adjacency matrices for
the query and data graphs. Matrix computations are commonly
grouped together in a set of programs termed, Basic Lin-
ear Algebra Subprograms (BLAS). BLAS is classified into
three categories a) vector operations (Level-1), b) matrix-
vector operations (Level-2), and c) matrix-matrix operations
(Level-3). Vector operations are the most basic operations
and the matrix-vector and matrix-matrix operations can be
realized in-terms of vector operations. For realizing matrix-
based operations, academic and industrial efforts have heavily
focused on efficient implementation of BLAS [18], [12].

In-memory computing platforms are bringing in a paradigm
shift by breaking away from traditional Von Neumann com-
puting models. Multiple in-memory computation platforms
have been proposed using ReRAMs. In [11], the authors

proposed a general purpose Programmable Logic-in-Memory
(PLiM) architecture. Neuromorphic computing have also been
realized using ReRAMs [7], [13], [15]. Furthermore, there
have been multiple dedicated circuit proposals implemented
using hybrid CMOS-ReRAM crossbar arrays [3], [2] along
with design automation toolflow [6] to support in-memory
computing using ReRAMs. A major advantage of in-memory
computing is that it directly addresses the data bandwidth
challenge, which is particularly prominent in data-intensive
applications, such as those enabled by BLAS. Partly based
on this motivation, in [17], integer matrix multiplication is
presented, where the authors have proposed a distributed
in-memory computing accelerator on ReRAM crossbar and
reported significant performance benefits compared to CMOS-
only realizations. However, given the prominent use-cases
of binary matrix operations and the possibility to explore
bit-level parallelism using ReRAM crossbar arrays, integer-
level operations call for further optimization. Besides, authors
in [17] essentially utilized the crossbar array as a Content-
Addressable Memory (CAM) structure similar to those earlier
proposed in [4] and did not utilize the stateful logic. To the
best of our knowledge, there is no existing work that addresses
the mapping of Binary BLAS (BiBLAS) using hybrid ReRAM
crossbar arrays. In short, the major contributions of this paper
are as follows.
• Efficient mapping of the Binary Level-1 BLAS on

ReRAM crossbar array.
• Detailed analysis of the impact of crossbar and input

vector dimensions on the overall performance is shown.
• We project speedup of 7x in terms of throughput com-

pared to the recent GPGPU based realization of BiBLAS.
The rest of the paper is organized as follows. In section II, a
brief introduction to Binary Level-1 BLAS and logic operation
using ReRAM crossbar array is presented. In section III,
efficient mapping schemes for multiple crossbar configura-
tions are proposed and estimates of delay are obtained. In
section IV, the proposed schemes are analyzed for the various
crossbar sizes, with throughput and energy estimates. Finally,
section V presents a conclusion to the paper.

II. PRELIMINARIES

A. Binary Level-1 BLAS Operations
For n-element vectors x and y, the inner product p1,n is

defined as follows.

x =
[
a1 a2 ... an

]
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y =
[
b1 b2 ... bn

]
p1,n = xT y =

n∑
i=1

ai.bi (1)

The vector elements are binary, i.e. ai, bi ∈ B{0, 1}. Since
we are operating on binary vectors, the multiplication is
interpreted as Boolean AND and the sum is interpreted as
Boolean XOR. Therefore, for binary inner product with n
elements, n AND and n − 1 XOR operations are required.
We represent Boolean AND, OR and XOR operations using .,
+ and ⊕ symbols. We introduce intermediate variables, that
are used during mapping onto ReRAM crossbar array. pi,j is
used to represent the partial product of the elements i to j.
p1,n is the inner product of two n-element vector.

ci,i+1 = ai.bi.(ai+1.bi+1) (2)

= (ai + bi).(ai+1 + bi+1) (3)

di,i+1 = ai.bi.ai+1.bi+1 (4)

= (ai + bi).(ai+1 + bi+1) (5)
pi,j = ai.bi ⊕ ai+1.bi+1 ⊕ . . .⊕ aj .bj (6)
pi,j = pi,k ⊕ pk+1,j (7)

pi,i+1 = ci,i+1 + di,i+1 (8)

B. Logic Operations using Crossbar Arrays

For logic operations, the ReRAM device can be seen as
a Finite State Machine (FSM), as shown in Figure 1. The
device has two input lines– wordline wl and bitline bl, and
the internal state S stored in the device acts as the third input.
The devices computes M3(S,wl, bl), where M3 is the 3-input
Boolean majority function and this value is available stored as
the next state of the device. Using this inherent function, we
can realize the Boolean functions as shown below.

a = M3(0, 1, a) // NOT
a.b = M3(a, b, 1) // AND

a+ b = M3(a, b, 0) // OR

Since the bitline input is inverted in the inherent function
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Fig. 1. ReRAM device logic operation realizing Majority.
computed by ReRAM device, wordline and bitline inputs
are not symmetric and hence cannot be interchanged. For
further details of the device characteristics, kindly refer
to [9], [8], [21]. Multiple devices can be organized as a
crossbar array, which share common wordlines and bitlines.
For example, the Figure 2 (a) shows a crossbar with a
common wordline and four bitlines. We represent a 1 × 4

crossbar in Figure 2 (b), with 4 devices C1,i, i ∈ {1, 2, 3, 4}
and one wordline wl and four bitlines blj , j ∈ {1, 2, 3, 4}.
To perform logic operations, a CMOS control unit which
coordinates and addresses the wordlines and bitlines, enables
free communication across the lines, as shown in Figure 2 (c).
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Fig. 2. ReRAM crossbar array with one wordline and four bitlines

In accordance with ReRAM device operations and state-
of-the-art circuit design studies [9], [3], [11], we assume the
following constraints related to logic operation using ReRAM
crossbar array:
C1 : There is a single ReRAM crossbar array for logic
operation. The operand vectors are stored in separate arrays,
and the values are assumed to be available whenever required.
C2 : To read a device state, ‘1’ and ‘0’ has to be applied to
the wordline and bitline of the device and the read out value
is available in the next cycle.
C3 : In a single cycle, all devices with a common wordline
can be read out simultaneously. Devices in that do not share
wordlines cannot be read simultaneously.
C4 : A read out value can be applied to any wordline or bitline
and it is also possible to apply it to multiple wordlines and
bitlines simultaneously.

Constraint C1 is imposed due to the fact that if the con-
trol unit has to coordinate and pass data between multiple
crossbar arrays, then the control unit would itself significantly
contribute to the performance overhead. If a value has to
be read out and applied to a line in the same cycle, the
control unit would need to operate at a higher frequency
leading to high power consumption, and hence constraints C2
is enforced. C3 follow from the fact that there is only read
port available per bitline and due to the array characteristics,
enabling multiple wordlines for read simultaneously would
result in correct read out values. Constraint C4 is fundamental
to enabling stateful logic using ReRAM crossbar arrays. Under
these constraints, we design efficient mapping schemes for
binary vector multiplication for various array configurations
and subsequently study overall performance trade-offs.

III. BIBLAS MAPPING FOR IN-MEMORY COMPUTATION

A. Mapping on (3k+1)×1 crossbar

In this subsection, we explain the mapping of 4-element
vector multiplication of a crossbar of dimensions 4 × 1, i.e.
k = 1. The steps have also been shown in Table I, for ease
of understanding. We present the general case of mapping n-
element vector multiplication, on crossbar of dimensions (3k+
1)× 1, in Figure 3, by means of a flowchart.
Computing partial product p1,2
S1: In the first step, the elements a1 and a2 are loaded in R11

and R21 respectively.



S1 S2 S3 S4 S5 S6

a1 0 b1 a1 ‘1’ a1.b1 0 a1.b1 0 a1.b1 ‘0’ a1.b1
a2 0 b2 a1 0 a2.b2 0 a2.b2 ‘1’ a2.b2 0 a2.b2
0 0 0 0 0 0 ‘1’ 0 0 a1.b1 0 a1.b1
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 a1.b1 0 a2.b2

S7 S8 S9 S10 S11 S12

0 c1,2 0 c1,2 0 c1,2 d1,2 c1,2 0 p1,2 0 p1,2
0 a2.b2 a1.b1 a2.b2 ‘1’ d1,2 0 d1,2 ‘0’ d1,2 a3 0

‘1’ a1.b1 0 a1.b1 0 a1.b1 0 a1.b1 ‘0’ a1.b1 a4 0

0 0 0 0 0 0 0 0 ‘0’ 0 0 0

0 ‘1’ 0 ‘0’ ‘1’ ‘0’

. . . S22 S23 S24 S25 S26 S27

‘1’ p1,2 0 p1,2 0 p1,2 ‘0’ p1,2 0 p1,2.p3,4 0 p1,2.p3,4
0 p3,4 0 p3,4 ‘1’ p3,4 0 p3,4 0 p3,4 p1,2 p3,4
0 0 ‘1’ 0 0 p1,2 0 p1,2 ‘1’ p1,2 0 p1,2
0 0 0 0 0 0 0 0 0 0 0 0

0 p1,2 0 p3,4 0 ‘1’

S28 S29 res
0 p1,2.p3,4 p3,4.p1,2 p1,2.p3,4 p1,4

‘1’ p3,4.p1,2 0 p3,4.p1,2 p3,4.p1,2
0 p1,2 0 p1,2 p1,2
0 0 0 0 0

0 ‘0’
TABLE I

BOOLEAN 4-ELEMENT VEC. MULT. ON (3K+1)×1, K=1 CROSSBAR ARRAY

S2: ai is ANDed with bi, i ∈ {1, 2}.
S3,S4: a1.b1 is read out, and in the next step, applied to the
bitline, to store the inverted value.
S5,S6: a2.b2 is read out, then applied to the bitline to compute
the a1.b1.a2.b2, which is c1,2.
S7,S8: a1.b1 is read out and ANDed with a2.b2 to compute
d1,2.
S9,S10: d1,2 is read out and ORed with c1,2. This is the result
of partial product of multiplication of the first two elements of
the vectors, and we represent it as p1,2. S11 : All the devices
except the device holding p1,2 is reset to 0, for computing the
partial product of the next two elements of the vectors.
Computing partial product p3,4
S12 − S21: Steps S1 − S11, are repeated, with ai, bi,
i ∈ {3, 4}, using the devices R21 − R51. At the end of these
steps, p3,4 is available in device R21.

XORing partial products to get vector product
S22,S23: p1,2 is read out, and in the next step, applied to the
bitline, to store the inverted value.
S24,S25: p3,4 is read out, then applied to the bitline, to
compute p1,2.p3,4 in device R11.
S26,S27: p1,2 is read out and ANDed with p3,4.
S28,S29 : In the final two steps, p1,2.p3,4 is read out, and
ORed with p1,2.p3,4 to obtain the vector product p1,4, available
in device R11.

Analysis of the mapping solution : Based on flowchart in
Figure 3, the number of steps that are required by this scheme
for multiplying n-element vector on (3k + 1) × 1 arrays can
be computed. For sake of simplicity, we assume that n is a
multiple of k. Otherwise, we can take the greatest integer k′

for estimating the number of steps such that k′ ≤ k and n is
a multiple of k.

To multiply a 2k-element vector on a (3k+1)×1 crossbar,

Load ai
(1)

Compute ai.bi
(1)

Read ai.bi
Store aibi

(2k)

Read ai+1.bi+1
Compute ci,i+1

(2k)

Read ai.bi
Compute di,i+1

(2k)

Read di,i+1
Compute pi,i+1

(2k)

XOR all the 
pi,i+1

[6(k-1)]

#ep == n?

Reset all 
devices except 

the device 
holding pi,i+1

(1)

ep = ep+2k

Finish

Yes

No

ep is the number of elements processed.

Fig. 3. Flowchart for n element vec. mul. on (3k + 1)× 1 crossbar.

i.e. n = 2k. The first two steps compute the AND of the 2k-
vector elements. In the next, 2k steps, the inverted values of
ai.bi are stored, i ∈ 1, 3, ..(2k − 1). In the following 2k steps,
the intermediate variable di,i+1 is computed, followed by
computation of ci,i+1 in the next 2k steps. Thereafter, another
2k steps are needed to OR ci,i+1 with di,i+1 to compute the
partial products pi,i+1. One step is needed to reset the devices,
that do not hold a partial product. Now, the crossbar has k
partial products, which have to be XORed. From the instance
of 4-element vector multiplication presented above, it can be
seen that computing XOR of two partial products take 6 steps.
Thus, it would take 6(k − 1) steps to combine all the partial
products, to obtain the partial product p1,2k. If n = 4k, then
we would have to reset the crossbar, except the device holding
p1,2k and repeat all these steps again to obtain the partial
product of the next 2k elements i.e. p2k+1,4k, and XOR it
with p1,2k to obtain the vector multiplication result—p1,4k.
Therefore, in general, the number of steps S that are required
for multiplying n-element vector on (3k+1)× 1 arrays is —

S = d n
2k
e(14k − 2) + (d n

2k
e − 1)6 (9)

2k devices are used for compuation of ai.bi and another k
devices are neccesary to store the ai.bi required for compua-
tion of di,i+1. The additional one device, is needed to hold the
partial product from the previous round, when the computation
of the current round is in progress. Due to the constraint
C3, all the operations to compute ci+1,di,i+1, XOR of partial
products, have to done sequentially, which contributes to the
delay of the mapping solutions. In the following subsection,
we propose a scheme of vector multiplication on 1× (2k+1)
crossbar array, which has 2k + 1 devices sharing a common
wordline that can be simulataneously read out, to mitigate the
issue of sequential computation of ci+1,di,i+1.

B. Mapping on 1×(2k+1) crossbar

Without loss of generality, we explain the steps of 4-
element vector multiplication on a 1 × 3 crossbar array, i.e.
k = 1. We present the generalized scheme for mapping
n-element vector multiplication on 1 × (2k + 1) crossbar
array, as flowchart in Figure 4.

Computing partial product p1,2
S1: Apply a1 and a2 to the bitlines of the device R1,1 and
R12, to load the inverted values of the elements.
S2 : Apply ‘1’ to the wordline and b1 and b2 to the bitlines



of the device R1,1 and R1,2, to compute ai + bi.
S3,S4 : Read out the devices R1,1 and R1,2 and in the next
clock cycle, apply ‘0’ to the wordline with ’a1 + b1 and
a2 + b2 to the bitlines of R1,2 and R1,1, to compute c1,2 and
d1,2 respectively.
S5,S6 : Read out device R1,2 which is holding c1,2 and
apply the read out value to the wordline and ‘0’ to the bitline
of device R1,1 to compute the partial product p1,2.
S7 : Reset all devices to 0, other than R1,2, which holds p1,2.

Computing partial product p3,4
S8 − S14 : Repeat the steps S1 − S7 with ai, bi, i ∈ {3, 4},
using the devices R12 − R13. At the end of these steps, p3,4
is available in device R12.

XORing partial products to get vector product
S15,S16: p1,2 and p3,4 is read out, and in the next step, ‘0’ is
applied to the wordline and p1,2 and p3,4 applied to the bitline
of devices R1,2 and R3,4 respectively to compute the terms,
p1,2.p3,4 and p1,2.p3,4.
S17,S18 : In the final two steps, p1,2.p3,4 is read out, and
ORed with p1,2.p3,4 to obtain the vector product p1,4, available
in device R11.

Load ai
(1)

Compute ai+ bi
(1)

Read ai+1+bi+1
Compute ci,i+1,di,i+1

(2)

Read di,i+1
Compute pi,i+1,

(2k)

XOR all the 
pi,i+1

[ref. to text for 
delay]

#ep == n?

Reset all devices 
except the 

device holding pi,

i+1
(1)

ep = ep+2k

Finish

Yes

No

Reset all 
devices except 

the devices 
holding pi,i+1

(1)

ep is the number of processed elements

Fig. 4. Flowchart for n-element vec. mul. on 1× (2k + 1) crossbar.
Analysis of the mapping solution : For n = 2k, in the first
two steps, ai + bi is computed for 2k-vector elements. In the
next two steps, these values are read out and ANDed to obtain
ci,i+1 and di,i+1 terms. The computation of ci,i+1 and di,i+1

terms is based on Equation 3 and 5 respectively. In the next 2k
steps, ci,i+1 is ORed with di,i+1 to compute partial product
pi,i+1, i ∈ 1, 3, ., 2k − 1. In the next step, all the devices, other
than the devices holding partial products, are reset.

Now, the crossbar has k partial products. In the next two
steps, the adjacent partial products are read out and ANDed
with each other. In the next 2k steps, pi+2,i+3.pi,i+1 is read out
and ORed with pi,i+1.pi+2,i+3 to compute the partial product
pi,i+3. This set of steps have to be repeated, till we obtain
the partial product p1,2k. This computation is a XOR tree
computation.

The above series of steps have to be repeated again for
computing p2k+1,4k. It has to be followed by XORing p1,2k
and p2k+1,4k to obtain the final vector multiplication product
p1,4k. The XOR operation requires an additional 4 cycles, as
evident from steps S15 − S20.

For any n and k is a divisor of n, the number of steps S
required for n element vector multiplication on 1 × 2k + 1

crossbar array is —

S = d n
2k
e(6 +

k∑
t=2,t′=t/2

(2 + 2t)) + (d n
2k
e − 1)4 (10)

In this scheme, 2k+1 can be read out simulataneously, and
hence improves the performance over the previous scheme for
(3k + 1)× 1, both in terms of number of cycles and number
of devices used. The reduction in k number of devices is
due to the fact that the intermediate inverted values do not
have to be stored in this case. The number of steps for XOR
has also reduced from 6 to 4. However, even in this scheme,
the operation for ORing ci,i+1 and di,i+1, XOR operations
required for combining the partial products have to be done
sequentially. This can be averted by using a crossbar size of
2×(2k+1), for which the multiplication scheme is proposed in
the next subsection.

C. Mapping on 2×(2k+1) crossbar

We demonstrate the mapping for multiplying 4-element
vector using 2 × 5 crossbar array i.e. k = 2. The general
scheme of mapping on 2×(2k+1) crossbar array is presented
in Figure 5.
Computing partial product p1,2 and p3,4
S1: Apply a1 − a4 to the bitlines of the device R1,1 − R1,4

respectively, to load the inverted values of the elements.
S2 : Apply ‘1’ to the wordline and b1 − b4 to the bitlines of
the device R1,1 −R1,4 respectively, to compute ai + bi.
S3,S4 : Read out the devices R1,i and in the next clock cycle,
apply ‘0’ to the wordline with content of R1,i+1 to the bitline
of device R1,i and content of R1,i to bitline of device of
R1,i+1, to compute di,i+1 and ci,i+1 respectively, i ∈ 1, 3.
S5,S6 : Read out device R1,j which is holding cj−1,j and
apply the read out value to the wordline and ‘0’ to the bitline
of device R2,j to compute the cj−1,j , j ∈ 2, 4.
S7,S8 : Read out device R2,j which is holding cj−1,j and
apply the read out value to the bitline and ‘1’ to the bitline of
device R1,j−1 to compute the pj−1,j , j ∈ 2, 4.
XORing partial products to get vector product
S9,S10: Read out p1,2 and p3,4, and in the next step, ‘0’ is
applied to the wordline and p3,4 and p1,2 applied to the bitline
of devices R1,1 and R1,3 respectively to compute the terms,
p1,2.p3,4 and p1,2.p3,4.
S11,S12 : In the final two steps, p1,2.p3,4 is read out, and
ORed with p1,2.p3,4 to obtain the vector product p1,4, available
in device R1,1.
Analysis of the mapping solution: Identical to the steps in
the previous scheme, for n = 2k, in the first two steps, ai+bi
is computed for 2k-vector elements. In the next two steps,
these values are read out and ANDed to obtain ci,i+1 and
di,i+1 terms. In the next 2 steps, ci,i+1 is read out and stored
in inverted form. This is followed by ORing with di,i+1 with
ci,i+1 by reading out ci,i+1 and applying it via the bitlines to
compute partial product pi,i+1, i ∈ 1, 3, ., 2k − 1. In the next
step, all the devices, other than the devices holding partial
products, are reset.



S1 S2 S3 S4 S5 S6 S7

‘1’ 0 0 0 ‘1’ a1 a2 0 ‘1’ a1 + b1 a2 + b2 0 ‘0’ a1 + b1 a2 + b2 0 ‘1’ d1,2 c1,2 0 c1,2 d1,2 c1,2 0 ‘0’ p1,2 c1,2 0

a1 a2 0 b1 b1 0 0 0 0 a2 + b2 a1 + b1 0 0 0 0 ‘0’ 0 0 0 ‘1’ ‘1’

S8 . . . S14 S15 S16 S17 Res

‘1’ p1,2 0 0 ‘1’ p1,2 p3,4 0 ‘0’ p1,2 p3,4 0 ‘1’ p1,2.p3,4 p3,4.p1,2 0 p3,4.p1,2 p1,2.p3,4 p3,4.p1,2 0 p1,4 p3,4.p1,2 0

0 a3 a4 0 0 0 p3,4 p1,2 0 0 0 0 ‘0’ 0 0
TABLE II

BOOLEAN 4-ELEMENT VECTOR MULTIPLICATION USING 1×(2K+1), K=1
S1 S2 S3 S4 S5

‘1’ 0 0 0 0 0 ‘1’ a1 a2 a3 a4 0 ‘1’ a1 + b1 a2 + b2 a3 + b3 a4 + b4 0 ‘0’ a1 + b1 a2 + b2 a3 + b3 a4 + b4 0 ‘1’ d1,2 c1,2 d3,4 c3,4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1 a2 a2 a4 b1 b2 b3 b4 0 0 0 0 a2 + b2 a1 + b1 a4 + b4 a3 + b3 0 0 0 0

S6 S7 S8 S9 S10

0 d1,2 c1,2 d3,4 c3,4 0 0 d1,2 c1,2 d3,4 c3,4 0 ‘0’ d1,2 c1,2 d3,4 c3,4 0 ‘1’ p1,2 c1,2 p3,4 c3,4 0 ‘1’ p1,2 c1,2 p3,4 c3,4 0

‘1’ 0 0 0 0 0 ‘1’ 0 c1,2 0 c3,4 0 0 0 c1,2 0 c3,4 0 0 0 c1,2 0 c3,4 0 0 0 c1,2 0 c3,4 0

0 c1,2 0 c3,4 0 0 0 0 0 0 c1,2 0 c3,4 0 0 0 0 0 0 0 p3,4 0 p1,2 0 0

S11 S12 Res

‘1’ p1,2.p3,4 c1,2 p3,4.p1,2 c3,4 0 p3,4.p1,2 p1,2.p3,4 c1,2 p3,4.p1,2 c3,4 0 p1,2.p3,4 c1,2 p3,4.p1,2 c3,4 0

0 0 c1,2 0 c3,4 0 0 0 c1,2 0 c3,4 0 0 c1,2 0 c3,4 0

0 0 0 0 0 ‘0’ 0 0 0 0
TABLE III

BOOLEAN 4-ELEMENT VECTOR MULTIPLICATION USING 2×(2K+1), K=2

Load ai
(1)

Compute ai+ bi
(1)

Read ai+1+bi+1
Compute ci,i+1,di,i+1

,
(2)

Read di,i+1
Compute pi,i+1

(2)

XOR all the pi,i+1

[ref. to text for 
delay]

#ep == n?
Reset all devices 
except the device 

holding pi,i+1
(1)

ep = ep+2k

Finish

Yes

No
Reset all devices 

except the devices 

holding pi,i+1
(1)

Read di,i+1

Compute di,i+1
(2)

Fig. 5. Flowchart for n-element vec. mul. on 2× (2k + 1) crossbar.

Now, the crossbar has k partial products. In the next two
steps, the adjacent partial products are read out and ANDed
with each other. In the next 2 steps, pi+2,i+3.pi,i+1 is read
out and inverted by applying it via the bitlines. Thereafter, the
inverted values pi+2,i+3.pi,i+1 are read out and applied via
the bitline to OR with pi,i+1.pi+2,i+3 to compute the partial
product pi,i+3. This set of steps have to be repeated, till we
obtain the partial product p1,2k. This computation is a XOR
tree computation.

For n = 4k, the above series of steps have to be repeated
again for computing p2k+1,4k, after resetting the devices which
do not hold the final partial product. It has to be followed
by XORing p1,2k and p2k+1,4k to obtain the final vector
multiplication product p1,4k. The XOR operation requires an
additional 4 cycles, as evident from steps S15 − S20.

For any n and k is a divisor of n, the number of steps S
required for n element vector multiplication on 2 × 2k + 1
crossbar array is —

S = d n
2k
e{10 +

k/2∑
t=2,t′=t/2

(7)}+ (d n
2k
e − 1)4 (11)

From equation 11, we can observe that due to the additional
wordline available and using it to store the inverted values, the
computation of OR step of multiple XOR operations can be
done in parallel and in constant number of steps. This helps
in substantial reduction in number of steps, compared to the
previous schemes.

IV. EXPERIMENTAL RESULTS
We estimate the performance of Binary Level-1 BLAS on
hybrid ReRAM crossbar array. In Figure 6, the impact on delay
(in terms of number of steps) for a fixed array size (k = 20),
on increasing the vector length is presented. As expected, with
increase in vector size, the delay increases. In Figure 7, for
a fixed vector length (n = 1024), with increase in the array
sizes, the delay decreases. As expected from the analysis of the
schemes, the vector multiplication using 2× (2k+1) crossbar
dimensions performs the best, in comparison to the other two
schemes, independent of the vector size n. Due the constraint
C3, increasing the number of wordlines beyond would not
help in reducing delay significantly, and hence we settle for
2× (2k + 1) configuration which has two wordline .

To estimate the throughput, we assume a mature ReRAM
technology based on ITRS [1], with a read/write time of 1ns.
For large vector length of n = 220, the performance of the
schemes for multiple values of k, in terms of throughput
(Gbits/s) is shown in Figure 8. Since the scheme for 2×(3k+1)
crossbar does all the operations in parallel during operation,
the throughput grows with increase in crossbar size, as ex-
pected. Beyond k = 9, the throughput saturates due to lack
of sufficient data to process. For the other two schemes, due
to mutliple sequential operations, the throughput is limited,
with increase in crossbar size. We estimate a maximum
achievable throughput of 14.75 Gbit/s. Direct implementation
of BiBLAS has been not reported so far.

There are no known implementations of BiBLAS avaiable to
benchmark against our scheme. By representing binary number
as single precision floating point number, it is estimated that
GPGPUs can achieve a throughput of 2 Gbits/s [16][20].
This highlights that proposed scheme in-memory computing
scheme promises a 7× speed up in terms of throughput,
compared to the BiBLAS operation on GPGPUs.

V. CONCLUSION

In this work, efficient mapping of BLAS subroutines for
binary vector on ReRAM crossbar arrays is proposed. We
explored multiple configurations for the crossbar array under



Fig. 6. Vector length (n) vs Number of Steps (S)
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practical design constraints and demonstrated performance
trade-offs while varying the vector dimensions. The ob-
tained performance results offer promising improvement over
CMOS-only implementations. In future, we plan to extend
this work in two major directions. First, we plan to look into
level-2 and level-3 BLAS kernels. Second, the demonstration
for a complete application flow using this kernels and bench-
marking against comparable CMOS implementations is on our
roadmap.

REFERENCES

[1] Emerging Research Devices (ERD) report, International Technology
Roadmap for Semiconductors (ITRS), 2013.

[2] A. Siemon, S. Menzel, A. Chattopadhyay, R. Waser and E. Linn. In-
memory adder functionality in 1s1r arrays. In Circuits and Systems
(ISCAS), 2015 IEEE International Symposium on, pages 1338–1341,
May 2015.

[3] A. Siemon, S. Menzel, R. Waser and E. Linn. A complementary resistive
switch-based crossbar array adder. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 5(1):64–74, March 2015.

[4] F. Alibart, T. Sherwood, and D. B. Strukov. Hybrid cmos/nanodevice
circuits for high throughput pattern matching applications. In Adaptive
Hardware and Systems (AHS), 2011 NASA/ESA Conference on, pages
279–286, 2011.

[5] G. V. Bard. Achieving a log(n) speed up for boolean matrix operations
and calculating the complexity of the dense linear algebra step of
algebraic stream cipher attacks and of integer factorization methods.
Cryptology ePrint Archive, Report 2006/163, 2006. http://eprint.iacr.
org/.

[6] D. Bhattacharjee and A. Chattopadhyay. Delay-optimal technology map-
ping for in-memory computing using ReRAM devices. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design,
ICCAD, 2016.

[7] D. B. Strukov, D.R. Stewart, J. Borghetti, X. Li, M. Pickett, G. M.
Ribeiro, W. Robinett, G. Snider, J. P. Strachan, W. Wu, Q. Xia, J. J. Yang
and R. S. Williams. Hybrid cmos/memristor circuits. In Proceedings of
2010 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1967–1970, 2010.

Fig. 8. Crossbar size (k) vs Throughput(Gbit/s)
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