
Technology-aware Logic
Synthesis For ReRAM
Based In-memory
Computing
Debjyoti Bhattacharjee1, Luca Amaru2 and
Anupam Chattopadhyay1

1. School of Computer Science and Engineering, Nanyang Technological University, Singapore

2. Synopsys Inc, US

debjyoti001@ntu.edu.sg

Outline

DATE 2018, Dresden 22-03-2018 2

Background

Technology Aware Logic Synthesis

Results

Logic-in-
memory (LiM)
Computing

Dedicated
Arithmetic

Circuits

Neuromorphic
Circuits

Multi-valued
Logic

Circuits

General Purpose Programmable
Architectures

PLiM ReVAMP MAGIC

1. The programmable logic-in-memory (PLiM) computer, Galliardon et al., DATE 2016
2. ReVAMP: ReRAM based VLIW Architecture for in-Memory computing, Bhattacharjee et al., DATE 2017
3. Logic design within memristive memories using memristor-aided loGIC (MAGIC), Talati et al., IEEE Trans 2016

DATE 2018, Dresden 22-03-2018 3

General
Purpose
Programmable
Architectures

Primitive Boolean
functions natively

realized vary.

Crossbar constraints
differ across
architectures

ReRAM devices
arranged as a crossbar
used for computation

1𝑥3 crossbar array

DATE 2018, Dresden 22-03-2018 4

Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices, Bhattacharjee et al., Scientific Reports 2018.

ReVAMP
A VLIW-like Architecture
using ReRAM crossbar
memory

Instruction Execute

➢ Conventional Instruction memory
➢ Two instructions : Read and Apply

➢ Decodes instruction to populate control
registers

Instruction
Fetch

Instruction
Decode

1. ReVAMP: ReRAM based VLIW Architecture for in-Memory computing, Bhattacharjee et al., DATE 2017

DATE 2018, Dresden 22-03-2018 5

ReVAMP
A VLIW-like Architecture
using ReRAM crossbar
memory

𝐴𝑝𝑝𝑙𝑦 𝑤 𝑤𝑠 𝑤𝑏 𝑣 𝑣𝑎𝑙63 𝑣 𝑣𝑎𝑙62 … 𝑣 𝑣𝑎𝑙0

➢ All the devices are reset to 0 initially

➢ Values are applied via a wordline and the bitlines to
perform computation

➢ This is specified using 𝐴𝑝𝑝𝑙𝑦 instruction

DATE 2018, Dresden 22-03-2018 6

(a)

(b)

(c)

ReVAMP
A VLIW-like Architecture
using ReRAM crossbar
memory

𝑅𝑒𝑎𝑑 𝑤

➢ The value stored in a word has to be read out for meaningful
logical operations

➢ This is specified using 𝑅𝑒𝑎𝑑 instruction Available in DMR

DATE 2018, Dresden 22-03-2018 7

Compilation
Flow

HDL

Logic
Synthesis

Technology
mapping

Design specified in HDL
[Verilog, blif, etc]

ABC, Cirkit, etc
[Generates logic network]

Support for
multiple

architectures are
already available

DATE 2018, Dresden 22-03-2018 8

Outline

DATE 2018, Dresden 22-03-2018 9

Background

Technology Aware Logic Synthesis

Results

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

DATE 2018, Dresden 22-03-2018 10

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

DATE 2018, Dresden 22-03-2018 11

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

The axiomatic
system for the
MIG Boolean
algebra,
referred to as Ω

“Majority-inverter graph: A novel data-structure and algorithms for efficient logic optimization,” Amaru et al., DAC 2014

DATE 2018, Dresden 22-03-2018 12

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

𝑓 = (𝑎 + 𝑏)𝑐
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑎) = 5/8
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑏) = 5/8
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑐) = 7/8

DATE 2018, Dresden 22-03-2018 13

➢ MIGs  hierarchical majority voting systems.
➢ Majority voting Capable of correcting different types of bit-

errors.
➢ Error masking property can be exploited for logic

optimization.
➢ Purposely introduce logic errors

➢ Choose inputs with the highest dictatorship for inserting errors
➢ Dictatorship : Ratio of input patterns over the total (2𝑛) for

which the output assumes the same value than the selected
input.

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

➢ 𝑥, 𝑦 and 𝑧 can be partitioned using the following partition
 𝑥 ! = 𝑦; 𝑥 = 𝑦 = 𝑧; 𝑥 = 𝑦 = 𝑧’

➢ Corresponding errors are
 A : 𝑥 = 𝑦; B : 𝑧 = 𝑦’ when 𝑥 = 𝑦; C : 𝑧 = 𝑦

DATE 2018, Dresden 22-03-2018 14

➢Select a subset of the primary inputs with
highest dictatorship.

➢For each selected input, we determine a
condition that causes an error.
➢ These errors have to be orthogonal.

“Majority-inverter graph: A novel data-structure and algorithms for efficient logic optimization,” Amaru et al., DAC 2014

Input
Partitioning
Methods

➢Consider 𝑓 = 𝑀(𝑥,𝑀(𝑥, 𝑦’, 𝑧),𝑀(𝑥’, 𝑦, 𝑧))

➢For error A: 𝑥 = 𝑦,
➢𝑓𝐴 = 𝑀(𝑥,𝑀(𝑦, 𝑦’, 𝑧),𝑀(𝑥’, 𝑥, 𝑧)) = 𝑀 (𝑥, 𝑧, 𝑧) = 𝑧

➢For error B: 𝑧 = 𝑦’,
➢𝑓𝐵 = 𝑀 (𝑥,𝑀(𝑥, 𝑦’, 𝑦’),𝑀(𝑥’, 𝑦, 𝑦’)) = 𝑀(𝑥, 𝑦’, 𝑥’) = 𝑦’

➢For error C: 𝑧 = 𝑦,
➢𝑓𝐶 = 𝑀(𝑥,𝑀(𝑥, 𝑧’, 𝑧),𝑀(𝑥’, 𝑧, 𝑧)) = 𝑀(𝑥, 𝑥, 𝑧) = 𝑥

➢Thus, 𝑓 = 𝑀(𝑓𝐴, 𝑓𝐵, 𝑓𝐶) = 𝑀(𝑧, 𝑦’, 𝑥)
➢Two levels collapse into a single level

➢Node count reduces by 2

MIG
Algebraic
Rewriting

Boolean IPM
Majority

Refractoring

DATE 2018, Dresden 22-03-2018 15

Technology
aware Logic
Synthesis

MIG
Algebraic
Rewriting

Boolean
IPM

Majority
Refactoring

➢ Cone of logic  canonical logic representation (BDD, Truth Table)
➢ Canonical logic representation  a new local MIG

(majority decomposition)
➢ Compute cost of the new local MIG

➢ If 𝑐𝑜𝑠𝑡 𝑙𝑜𝑐𝑎𝑙 𝑀𝐼𝐺 < 𝑐𝑜𝑠𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑜𝑔𝑖𝑐 𝑐𝑜𝑛𝑒 :
Local MIG is imported back to the network

➢ Repeat for every node of the MIG in topological order
➢ Stop if no more improvement or a computation limit is

reached

DATE 2018, Dresden 22-03-2018 16

Technology
aware Logic
Synthesis
Optimization goals

DATE 2018, Dresden 22-03-2018 17

➢ #nodes indicates the number of computations needed.
➢ reduction of number nodes in MIG is primary

objective
➢ For ReRAM devices arranged as a crossbar,

➢ All the operations in a level of the logic networks
might not be computed in parallel

➢ Depth of MIG does not directly translate to delay
➢ Rationale for crossbar-aware optimization :

➢ Enforce logic sharing in the MIG
➢ Share non-inverted edges,

➢ if multiple inverted-edges are shared, propagate
the inverts above.

Outline

DATE 2018, Dresden 22-03-2018 18

Background

Technology Aware Logic Synthesis

Results

Results
Performance on
HARD EPFL
benchmarks

➢ Depth-optimized hard EPFL benchmarks, available as MIG
➢ Word length of crossbar = 16
➢ Default technology mapping flow for ReVAMP used.

0

20

40

60

adder div log2 max mult sin sqrt square

Improvement in Technology Mapping (in percentage)

Nodes Edges Words Delay

Benchmark #Nodes #Edges #Words Delay
adder 3369 9333 255 12597
adder(opti) 2811 7662 176 7603

adder div log2 max mult sin sqrt square
3369 76005 37650 7846 42194 7946 52538 19395DATE 2018, Dresden 22-03-2018 19

Results
Performance on
HARD EPFL
benchmarks

➢ On average,
➢ Reduction #nodes = 10.8%

(maximum reduction 𝟏𝟔. 𝟓𝟔%)
➢ Reduction in overall delay = 16.67%

(maximum reduction of 𝟑𝟗. 𝟔𝟒%)
➢ For all the benchmarks, > 99% device utilization achieved

by the technology mapping algorithm.

0

20

40

60

adder div log2 max mult sin sqrt square

Improvement in Technology Mapping (in percentage)

Nodes Edges Words Delay

DATE 2018, Dresden 22-03-2018 20

Results
Impact of word
length on
Synthesis
optimizations

0.00

10.00

20.00

30.00

40.00

50.00

div16 hamming spi sqrt32 tv80

Improvement in Delay

32 64 128 256

0.00

10.00

20.00

30.00

40.00

div16 hamming spi sqrt32 tv80

Improvement in #Words

Word length

DATE 2018, Dresden 22-03-2018 21

Conclusion

➢ Proposed a novel crossbar-aware MIG optimization
automation flow

➢ Integrated into existing crossbar-aware technology
mapping flow

➢ Demonstrated performance benefits over large benchmarks
➢ Significant reduction in delay and number of words

required for mapping
➢ Enabled improved performance with increase in word

length

DATE 2018, Dresden 22-03-2018 22

Technology-aware Logic
Synthesis For ReRAM
Based In-memory
Computing
Debjyoti Bhattacharjee1, Luca Amaru2 and
Anupam Chattopadhyay1

1. School of Computer Science and Engineering, Nanyang Technological University, Singapore

2. Synopsys Inc, US

debjyoti001@ntu.edu.sg

