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1. The programmable logic-in-memory (PLiM) computer, Galliardon et al., DATE 2016
2. ReVAMP: ReRAM based VLIW Architecture for in-Memory computing, Bhattacharjee et al., DATE 2017
3. Logic design within memristive memories using memristor-aided loGIC (MAGIC), Talati et al., IEEE Trans 2016
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General 
Purpose 
Programmable 
Architectures

Primitive Boolean 
functions natively 

realized vary.

Crossbar constraints 
differ across 
architectures 

ReRAM devices 
arranged as a crossbar 
used for computation

1𝑥3 crossbar array
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Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices, Bhattacharjee et al., Scientific Reports 2018.



ReVAMP
A VLIW-like Architecture 
using ReRAM crossbar 
memory

Instruction Execute

➢ Conventional Instruction memory
➢ Two instructions : Read and Apply

➢ Decodes instruction to populate control 
registers

Instruction
Fetch

Instruction 
Decode

1. ReVAMP: ReRAM based VLIW Architecture for in-Memory computing, Bhattacharjee et al., DATE 2017
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ReVAMP
A VLIW-like Architecture 
using ReRAM crossbar 
memory

𝐴𝑝𝑝𝑙𝑦 𝑤 𝑤𝑠 𝑤𝑏 𝑣 𝑣𝑎𝑙63 𝑣 𝑣𝑎𝑙62 … 𝑣 𝑣𝑎𝑙0

➢ All the devices are reset to 0 initially

➢ Values are applied via a wordline and the bitlines to 
perform computation

➢ This is specified using 𝐴𝑝𝑝𝑙𝑦 instruction
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ReVAMP
A VLIW-like Architecture 
using ReRAM crossbar 
memory

𝑅𝑒𝑎𝑑 𝑤

➢ The value stored in a word has to be read out for meaningful 
logical operations

➢ This is specified using 𝑅𝑒𝑎𝑑 instruction Available in DMR
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Compilation
Flow

HDL

Logic
Synthesis

Technology 
mapping

Design specified in HDL
[Verilog, blif, etc]

ABC, Cirkit, etc
[Generates logic network]

Support for 
multiple 

architectures are 
already available
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Technology 
aware Logic 
Synthesis

MIG
Algebraic 
Rewriting

Boolean IPM
Majority 

Refractoring

The axiomatic 
system for the 
MIG Boolean 
algebra, 
referred to as Ω

“Majority-inverter graph: A novel data-structure and algorithms for efficient logic optimization,” Amaru et al., DAC 2014
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Algebraic 
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Boolean IPM
Majority 

Refractoring

𝑓 = (𝑎 + 𝑏)𝑐
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑎) = 5/8
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑏) = 5/8
𝐷𝑖𝑐𝑡𝑎𝑡𝑜𝑟𝑠ℎ𝑖𝑝(𝑐) = 7/8
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➢ MIGs  hierarchical majority voting systems.
➢ Majority voting Capable of correcting different types of bit-

errors. 
➢ Error masking property can be exploited for logic 

optimization.
➢ Purposely introduce logic errors

➢ Choose inputs with the highest dictatorship for inserting errors
➢ Dictatorship : Ratio of input patterns over the total (2𝑛) for 

which the output assumes the same value than the selected 
input.
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➢ 𝑥, 𝑦 and 𝑧 can be partitioned using the following partition 
 𝑥 ! = 𝑦; 𝑥 = 𝑦 = 𝑧; 𝑥 = 𝑦 = 𝑧’

➢ Corresponding errors are 
 A : 𝑥 = 𝑦; B : 𝑧 = 𝑦’ when 𝑥 = 𝑦; C : 𝑧 = 𝑦
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➢Select a subset of the primary inputs with 
highest dictatorship.

➢For each selected input, we determine a 
condition that causes an error. 
➢ These errors have to be orthogonal. 

“Majority-inverter graph: A novel data-structure and algorithms for efficient logic optimization,” Amaru et al., DAC 2014



Input 
Partitioning 
Methods

➢Consider 𝑓 = 𝑀(𝑥,𝑀(𝑥, 𝑦’, 𝑧),𝑀(𝑥’, 𝑦, 𝑧))

➢For error A:  𝑥 = 𝑦,
➢𝑓𝐴 = 𝑀(𝑥,𝑀(𝑦, 𝑦’, 𝑧),𝑀(𝑥’, 𝑥, 𝑧)) = 𝑀 (𝑥, 𝑧, 𝑧) = 𝑧

➢For error B: 𝑧 = 𝑦’, 
➢𝑓𝐵 = 𝑀 (𝑥,𝑀(𝑥, 𝑦’, 𝑦’),𝑀(𝑥’, 𝑦, 𝑦’)) = 𝑀(𝑥, 𝑦’, 𝑥’) = 𝑦’

➢For error C: 𝑧 = 𝑦,
➢𝑓𝐶 = 𝑀(𝑥,𝑀(𝑥, 𝑧’, 𝑧),𝑀(𝑥’, 𝑧, 𝑧)) = 𝑀(𝑥, 𝑥, 𝑧) = 𝑥

➢Thus, 𝑓 = 𝑀(𝑓𝐴, 𝑓𝐵, 𝑓𝐶) = 𝑀(𝑧, 𝑦’, 𝑥)
➢Two levels collapse into a single level

➢Node count reduces by 2

MIG
Algebraic 
Rewriting

Boolean IPM
Majority 

Refractoring
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Technology 
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Synthesis

MIG
Algebraic 
Rewriting

Boolean 
IPM

Majority 
Refactoring

➢ Cone of logic  canonical logic representation ( BDD, Truth Table)
➢ Canonical logic representation   a new local MIG 

(majority decomposition)
➢ Compute cost of the new local MIG

➢ If 𝑐𝑜𝑠𝑡 𝑙𝑜𝑐𝑎𝑙 𝑀𝐼𝐺 < 𝑐𝑜𝑠𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑜𝑔𝑖𝑐 𝑐𝑜𝑛𝑒 :
Local MIG is imported back to the network

➢ Repeat for every node of the MIG in topological order
➢ Stop if no more improvement or a computation limit is 

reached
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Technology 
aware Logic 
Synthesis
Optimization goals
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➢ #nodes indicates the number of computations needed. 
➢ reduction of number nodes in MIG is primary 

objective
➢ For ReRAM devices arranged as a crossbar,

➢ All the operations in a level of the logic networks 
might not be computed in parallel

➢ Depth  of MIG does not directly translate to delay
➢ Rationale for crossbar-aware optimization :

➢ Enforce logic sharing in the MIG
➢ Share non-inverted edges,

➢ if multiple inverted-edges  are shared, propagate 
the inverts above. 
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Results
Performance on 
HARD EPFL 
benchmarks

➢ Depth-optimized hard EPFL benchmarks, available as MIG
➢ Word length of crossbar = 16
➢ Default technology mapping flow for ReVAMP used.
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Improvement in Technology Mapping (in percentage)

Nodes Edges Words Delay

Benchmark #Nodes #Edges #Words Delay
adder 3369 9333 255 12597
adder(opti) 2811 7662 176 7603

adder div log2 max mult sin sqrt square
3369 76005 37650 7846 42194 7946 52538 19395DATE 2018, Dresden 22-03-2018 19



Results
Performance on 
HARD EPFL 
benchmarks

➢ On average, 
➢ Reduction #nodes    = 10.8%

(maximum reduction 𝟏𝟔. 𝟓𝟔%)
➢ Reduction in overall delay = 16.67%

(maximum reduction of 𝟑𝟗. 𝟔𝟒%)
➢ For all the benchmarks, > 99% device utilization achieved 

by the technology mapping algorithm.
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Improvement in Technology Mapping (in percentage)

Nodes Edges Words Delay
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Results
Impact of word 
length on 
Synthesis 
optimizations
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Conclusion

➢ Proposed a novel crossbar-aware MIG optimization 
automation flow 

➢ Integrated into existing crossbar-aware technology 
mapping flow

➢ Demonstrated performance benefits over large benchmarks
➢ Significant reduction in delay and number of words 

required for mapping 
➢ Enabled improved performance with increase in word 

length
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