
Delay-Optimal Technology Mapping
for In-Memory Computing

using ReRAM Devices

Debjyoti Bhattacharjee and Anupam Chattopadhyay

School of Computer Science and Engineering

Nanyang Technological University,

Singapore

Email : {debjyoti, anupam}@ntu.edu.sg

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

ReRAM fundamentals

❖ Two input terminals - wl (wordline) and bl (bitline)

❖ Internal resistive state S acts as third input.

❖ Next state NS is Boolean majority of the three

inputs (M3) with the bitline input inverted.

ReRAM fundamentals

❖ In a clock cycle/step, a device can be read out

The readout value can be applied as input to the wordline or

bitline of any other device.

❖ The primary inputs (PI) and the inverted values of the PI, constants

`1' and `0', can be applied directly to the wordlines and bitlines of the

devices.

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Problem statement

• Determine a sequence of inputs, to be applied, to the wordlines

and the bitlines of ReRAM 1S1R devices for computation of a

Boolean function

• The delay of the obtained mapping is equal to the number of steps

that the mapping contains

• The mapping is delay − optimal if the number of steps is minimum.

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Logic representation

• Boolean functions are represented using

– Majority Inverter Graph (MIG)

• Primary Input (PI)

– Nodes without incoming edges

• Internal node

– Node with incoming edges.

• Primary Output (PO)

– Internal node without any outgoing edges.

• Level of a node:
– level(node) = 0, if node is PI

– level(node) = max(level(succ))+1, otherwise

PI

PO

L0

L1

L2

Logic representation

• Each internal node represents a

Boolean majority with 3 inputs (M3).

• Directed edge i ➡ j indicates that

output of node i is input to node j

• Edges can be regular or inverted.

Regular

edge

Inverted

edge

A Majority Inverter Graph (MIG)

Technology mapping

• An internal node with a single inverted

node can be directly realized using a

single operation.

SS wlwl blbl

S1S1

• Native function realized by

ReRAM devices

sSsss

Swl

bl

• A device holds the state S

– This is the “host” for computation

• wl and bl are applied to the wordline and

bitline of the “host” to compute S1.

S1

Technology mapping

• To enable computation of an internal node in a

single operation

– The node must have a single inverted input

– A host has to be selected for computation

SS wlwl blbl

S1S1

• We propose a set of transformations to the MIG which will ensure

that these conditions are always true.

Inversion Transformation

• Node S4 does not have any inverted inputs.

• Node S3 is inverted and used as bitline input.

• This inversion is propagated bottom up.

¬𝑀3 𝑆1, 𝑆2, 𝑆3 = 𝑀3 ¬𝑆1,¬𝑆2,¬𝑆3

¬

Busy Replication

• To choose a predecessor of a node as “host”

– It should not be “busy”  multiple successors of a node implies it is “busy”.

• For nodes S4 and S5, S1 is chosen as “host” but it is “busy”.

– Replicas of the “host” node are therefore created.

Negation Replication

• Node S2 is required in negated form by S5 and regular form by node S6

– Therefore two copies of S2 are required – one inverted and the

other non-inverted.

• This is negation replication.

S1S1 S2S2 S3S3

S6S6S5S5

S4S4 S1S1 ¬S2 S3S3

S6S6S5S5

S4S4S2

Inverted S2 Replication

(a) (b)

Preloading PI

• All the internal node predecessors of S4 are busy

– We can use “busy” replication, but that might lead to further

replication of nodes at higher levels

• Instead, “a” can be pre-loaded in a new device and used for

computation of S4

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Delay-Optimal Technology mapping

• ProcessNode determines the

“host”, wordline and bitline

inputs of the node

– To do so, it uses the

transformations that

were discussed earlier.

• ProcessNode adds the

predecessors of the node to

nodeHeap for processing.

The proposed algorithm maps any MIG with k-levels

using ReRAM devices using k +1 steps.

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Device Reduction by reuse

• We define start time and end time of a device

– tstart : The first cycle in which a device is used.

– tend : The last cycle in which a device is used.

• One cycle is needed to reset a device

• Therefore a device d1 can be reused for operations of device d2 if

– d2. tstart > d1. tend + 1

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Dispatch Parallelism

• Dependencies among instructions can be shown by a

ReRAM Dependency Graph (RDG).

• The dispatch parallelism dp of a controller is equal to the

maximum number of operations that it can issue in a clock cycle.

RDG example with scheduling

• The initial set of operations that map a MIG is obtained using the delay-optimal

mapping algorithm.

• From these instructions, the RDG is constructed.

• With dispatch parallelism 2, the RDG is scheduled using As-Soon-As-Possible

scheduling heuristic.

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Experimental Results

• EPFL benchmarks were used for evaluation

• Implementation was done in Python3

• Execution system specifications

– Ubuntu 14.04 with 16 cores and 64 GB RAM.

Experimental Results

Experimental Results

Dispatch Parallelism vs Delay in #cycles

Experimental Results

Dispatch Parallelism vs Avg. #Ins/cycle

Outline

• ReRAM fundamentals

• Problem statement

• Logic Representation and Technology mapping

• Delay Optimal Technology Mapping

• Device Reduction

• Dispatch parallelism constrained scheduling

• Experimental Results

• Conclusion

Conclusion

• We presented a delay-optimal technology mapping algorithm for

mapping MIG to ReRAMs

• Further, we proposed an effective device reuse algorithm

– Reduction in number of devices used by up to 92.63%,

compared to the basic solution.

• Heuristic for dispatching dp -instructions in parallel was proposed

– Enables controls over the complexity of the controller

– A smaller dp makes the controller simpler, but potentially

causing the MIG computation to be slower.

