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S U M M A R Y
The Fast Marching Method is an efficient numerical algorithm for propagating interfaces such
as first-arrival seismic wave fronts travelling through a velocity distribution. Fast Marching
solutions have been developed for use on rectilinear grids in 2-D and 3-D. We are interested
in unstructured grids as they provide some computational advantages when dealing with
complicated shapes that are difficult to represent with rectilinear grids. Fast Marching solutions
have also been developed for unstructured 2-D triangular grids but this has yet to be extended
to unstructured 3-D tetrahedral grids. In this paper, we extend the Fast Marching Method to
unstructured 3-D tetrahedral grids using a derivation that follows the 2-D case. The resulting
equations are discussed in intuitive terms and an error analysis is performed. Our method is
applied to a simple synthetic example and to a more complicated model based on the Voisey’s
Bay massive sulphide deposit in Labrador, Canada.
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1 I N T RO D U C T I O N

As discussed by Vidale (1988), first-arrival ray tracing can be prob-
lematic when shadow zones exist or where multiple paths between
source and receiver are possible. Also, ray tracing becomes com-
putationally impractical when many source–receiver pairs are con-
sidered. Calculating first arrival traveltimes via a finite difference
approach on a discretized domain avoids problematic ray tracing.

Modelling of seismic traveltimes via propagation of wave fronts
is governed by the Eikonal equation

‖∇t‖2 = s, (1)

where t is traveltime and s is the slowness, the inverse of veloc-
ity. Many authors have developed numerical methods for solving
this equation on discretized domains. These methods work on a dis-
cretization of the subsurface where each cell in the grid is commonly
assigned a constant slowness value; that is the approach taken here
but, alternately, the slowness could change within each cell follow-
ing some simple function. The solutions begin by initializing the
traveltimes near-source and the traveltimes at grid nodes away from
the source are then calculated using finite difference formulae. The
various modelling approaches can be grouped by the way in which
the solution front passes through the grid.

Vidale (1988) developed a solution for 2-D rectilinear grids in
which the solution front marches away from a point source in a box
shape. Vidale (1990) extended this to 3-D rectilinear grids, which
was later updated by Podvin & Lecomte (1991). Expanding box
schemes can be unstable when rays turn and violate causality rules
(Kim & Cook 1999). The requirement of causality as defined by
Vidale (1988) is that ‘the time for the part of the ray path lead-
ing to a point must be known before the time of the point can be

found’. Kim & Cook (1999) improved on the box marching insta-
bility issue by developing more accurate finite difference formulae
and post-sweeping procedures for rectilinear grids. Schneider et al.
(1992) incorporated a nonlinear interpolation and systematic map-
ping scheme to overcome the problem, and Hole & Zelt (1995)
introduced a 1-D operator and a reverse propagation scheme to do
so. Others took different routes that changed the marching strategy.
Alkhalifah & Fomel (2001) developed a marching framework in
spherical coordinates where the wave fronts are marched radially
away from a point source. Qin et al. (1992) marched the solution
front outwards on a regular grid in a way that roughly approximated
the true wave fronts. Sethian (1996) developed a more efficient ‘Fast
Marching Method’ (FMM) that advances wave fronts in a mono-
tonic manner, thereby building causality directly into the marching
scheme. The FMM solution fronts (i.e. the interface between grid
nodes with traveltimes assigned and those without) then closely
mirror the seismic wave fronts.

We choose to work with unstructured grids instead of rectilinear
grids because the former allow for efficient generation of compli-
cated subsurface geometries, such as those often encountered in
hard-rock environments. This becomes important when one wishes
to incorporate prior information into forward or inverse modelling
investigations. Also, unstructured grids can significantly reduce the
problem size involved in forward and inverse calculations compared
to rectilinear grids by easily increasing cell volumes in particular
regions of the subsurface while avoiding large aspect ratios of cell
dimensions, which can produce modelling instability for some nu-
merical solutions.

Criticism of the FMM approach includes that it is more ex-
pensive than the box marching equivalent and it cannot be eas-
ily modified to achieve high-order accuracy (Kim & Cook 1999),
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although Sethian & Popovici (1999) suggest that use of a higher-
order finite-difference approximation should be possible. These is-
sues are irrelevant, however, when moving to unstructured grids
where box marching is no longer applicable and the FMM becomes
the marching scheme of choice.

An obvious limitation of the FMM, and indeed any marching
finite-difference Eikonal solver, is that it is only able to produce
the first-arrival solution. In applications such as seismic reflection
imaging in complex media, the first-arrival solution may not be ad-
equate (see Geoltrain & Brac 1993). To calculate multiple arrivals,
one can perform computations in the phase space as do Fomel
& Sethian (2002). Rawlinson & Sambridge (2004b) and de Kool
et al. (2006) calculate multiple arrivals in layered media by reini-
tializing the FMM solution at reflective layer boundaries, thereby
calculating multiple reflection and transmission phases. Another
limitation is the assumption of isotropic velocity. An extension to
anisotropic media, on unstructured grids, is provided by the ordered
upwind methods of Sethian & Vladimirsky (2001) and Sethian &
Vladimirsky (2003) (see also Sethian & Vladimirsky 2000).

Theory for the FMM and related level set methods is thoroughly
covered in Sethian (1999b). The FMM provides a method for solv-
ing the Eikonal equation and thereby determining the propagation of
first-arrival seismic wave fronts through a given slowness distribu-
tion. Initial work focussed on regular rectilinear 2-D grids (Sethian
1996). Sethian & Popovici (1999) extended the methods to similarly
structured 3-D grids. Kimmel & Sethian (1998) developed an ex-
tension to unstructured 2-D triangular grids which is also covered
in Sethian (1999a) and Rawlinson & Sambridge (2004a). Fomel
(1997) also extended the methods to unstructured 2-D triangular
grids, arriving at an equivalent result via a different formulation of
the problem.

There has been some work using unstructured tetrahedral grids
for seismic tomography, where rays are traced through 3-D mod-
els of Delaunay tetrahedral cells. For example, see Sambridge &
Gudmundsson (1998) and Sambridge & Faletič (2003). Sambridge
& Rawlinson (2005) outline some of the non-trivial book-keeping
practicalities and other implementation issues involved when using
unstructured tetrahedral grids in seismic modelling. Several authors
have indicated the possibility of an extension of the FMM to un-
structured tetrahedral grids: Fomel (1997), Rawlinson & Sambridge
(2004a) and Rawlinson & Sambridge (2004b). However, the FMM
has yet to be extended to these types of grids.

In this paper, we focus on the local update (finite difference
stencil) required within the FMM solution for unstructured 3-D
tetrahedral grids. The remainder of the FMM solution follows sim-
ilar algorithmic details to other authors mentioned earlier so for
brevity we provide only a brief summary below. We then provide
an overview of the details of the local update on 2-D triangular
grids. This is then extended to 3-D tetrahedral grids, followed by
error analysis and two test scenarios. Our intention is to use our
FMM solution as the forward solver within an inversion algorithm
that works on unstructured grids, and we frame our concluding
discussion based around that application.

2 S U M M A RY O F T H E FA S T M A RC H I N G
M E T H O D

Consider the section of a regular rectilinear 2-D grid represented
in Fig. 1. There are several methods for initializing the FMM so-
lution. Our choice is to assume that the slowness of the medium is
homogeneous in the local vicinity of the point source. We define an

Figure 1. A section of a regular rectilinear 2-D grid on which an FMM
solution is being initialized around a point source. Grid nodes are represented
as small circles with thin connecting lines indicating the boundaries between
grid cells. A seismic source is represented as a star and a large thick circle
is drawn with the source at its centre; grid nodes within the circle are filled
black and grid nodes immediately connected to nodes inside the circle are
filled grey.

Figure 2. A section of a regular rectilinear 2-D grid through which an
FMM solution is progressing. Grid nodes are represented as circles with
thin connecting lines indicating the boundaries between grid cells. Upwind
nodes are filled black, downwind nodes that are ‘close’ are filled grey, and
downwind nodes that are ‘far’ are filled white. The central node is circled
for referencing in the text. Two parallel thick lines represent either side of a
narrow band of ‘close’ nodes.

initialization radius and calculate the traveltime at any nodes within
that radius by multiplication of the local homogeneous slowness by
the distance from the node to the source. Nodes can be specified
as being either ‘upwind’ or ‘downwind’ from the solution front.
Immediately after initialization, the large circle in Fig. 1 represent-
ing the initialization radius can be thought of as the solution front.
Any nodes inside this radius are upwind and all other nodes are
downwind from the solution front.

Now consider Fig. 2, which captures the FMM solution in part of
the grid at a later stage. The downwind nodes are further categorized
into a set of ‘close’ nodes immediately connected to upwind nodes,
and a set of ‘far’ nodes not immediately connected to upwind nodes.
Upwind nodes have firm traveltime values that cannot be altered at
a later stage in the FMM solution. The traveltimes at the close
downwind nodes are calculated based on the traveltimes at their
neighbouring upwind nodes. Those calculations are referred to as
local traveltime updates. For any particular close node, there may
be several possible local update calculations. For example, for the
circled close node in Fig. 2, the local update can be calculated
through either of the two cells on its immediate left. The FMM
calculates first arrivals so the actual traveltime taken by this node is
the minimum of all those calculated through the local updates.

Once all the local traveltime updates are calculated for the close
nodes, they define a narrow band of trial nodes that could be moved
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Figure 3. A geometrical scheme for the traveltime updating procedure in
2-D, adapted from Fomel (1997). A triangular cell lies between three nodes
A, B and C. Linear wave fronts are drawn as thin grey lines. A traversing
ray hitting node C is drawn as a thick grey line perpendicular to the wave
fronts.

into the set of upwind nodes. The FMM moves the solution front
forward monotonically. To do so, only the close node with the small-
est traveltime is chosen to become an upwind node. Afterwards, any
downwind nodes that were originally ‘far’ but are now connected
to the new upwind node are added to the set of ‘close’ nodes. The
procedure repeats until all nodes in the grid are upwind. The FMM
is so-called ‘fast’ due to the use of an efficient heap sort strategy for
determining which close node in the narrow band has the smallest
traveltime.

A common approach is for the local traveltime updates to assume
linear wave fronts (planar in 3-D) at the scale of the grid cells. The
updates and this assumption are discussed in more detail in the
following sections. The linear wave front assumption leads to first-
order modelling accuracy. Although higher-order accuracy can be
obtained, it complicates the numerical methods and we choose to
follow the simplest path in this first attempt at developing a solution
to the Eikonal equation on 3-D unstructured grids. When close to
a point source, wave fronts will have a circular character (spherical
in 3-D) and the assumption of locally linear wave fronts falls apart.
The assumption will be more appropriate as the waves move further
from the source. Hence, by increasing our initialization radius, we
can reduce errors associated with the assumption of linear wave
fronts in the local updates. An analysis of this source of error is
provided in Section 5.

3 T H E L O C A L T R AV E LT I M E U P DAT E
O N A 2 - D T R I A N G U L A R G R I D

3.1 Solution via Fermat’s principle

Here we follow the procedure of Fomel (1997), although we perform
a slightly different derivation and we provide additional intuitive
comments on the meaning of some equations and mathematical
quantities derived. Refer to Fig. 3 in the following discussion. The
traveltimes at nodes A and B are tA and tB respectively, and are
treated as known quantities calculated at previous stages in the FMM
solution. The problem is to calculate a value for tC, the traveltime
at the remaining node C. The common assumption is made that the

wave fronts travelling through the cell are linear such that any rays
travelling through the cell are also linear.

ξ is a normalized distance along the line segment from node A
to node B (line AB), and ρ is the distance from node C to a point
at ξ on line AB. ξ 0 is the normalized projection of node C onto line
AB, and ρ0 is the length of the normal from node C to the point at
ξ 0. We can then write

tC(ξ ) = t(ξ ) + sρ

= tA + uξ + s
√

c2(ξ − ξ0)2 + ρ2
0 ,

(2)

where u = tB − tA, c is the length of line AB, and s is the
homogeneous slowness of the triangular cell. The term t(ξ ) = tA +
uξ is the linearly interpolated traveltime at a point at ξ on line AB.
The term sρ is the traveltime for the path from that point to node
C, calculated as slowness multiplied by distance. That distance is
calculated using Pythagoras’ theorem applied to the right triangle
connecting points C, ξ 0 and ξ .

Fomel (1997) invoked Fermat’s principle which states that the ray
to C should correspond to a local traveltime minimum. This equates
to seeking a value for ξ that minimizes the traveltime through the
cell, and therefore minimizes eq. (2). To solve, we first substitute
ξ̃ = ξ − ξ0 into eq. (2) to give

tC(ξ̃ ) = tA + u(ξ̃ + ξ0) + s
√

c2ξ̃ 2 + ρ2
0 . (3)

We take the derivative of eq. (3) with respect to ξ and set to zero,

dtc

dξ
= dtc

d ξ̃
= u + sc2ξ̃

(
c2ξ̃ 2 + ρ2

0

)−1/2 = 0, (4)

which yields

ξ̃ = ±w−1c−1uρ0 (5)

where we have defined

w2 = s2c2 − u2 ≥ 0 (6)

(see Section 3.3 for more on the w2 ≥ 0 requirement). Eq. (4) also
indicates the equality

ρ = −sc2u−1ξ̃ = ∓scw−1ρ0. (7)

We are interested in the value of ξ̃ in eq. (5) that minimizes tC

in eq. (3). If we specify that tB > tA such that u > 0 then by
considering the term u(ξ̃ + ξ0) in eq. (3), the negative root in eq. (5)
will provide the minimum solution. Hence, we have

ξ = ξ0 − w−1c−1uρ0, (8)

ρ = scw−1ρ0, (9)

and substituting back into eq. (2) yields the simple expression

tC = tA + uξ0 + wc−1ρ0. (10)

Both eqs (8) and (10) are equivalent to those derived by Fomel
(1997) but we have introduced the quantity w which we discuss
further in Section 3.3.

3.2 The first-arrival local update

The traveltime in eq. (10) corresponds to a wave transmitted through
the cell (and possibly refracted when passing across line AB from
one cell to the next). The FMM local update considers both the
transmitted wave traveltime defined by eq. (10) and traveltimes that
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can be attributed to the phenomenon of head waves travelling along
the sides AC and BC (Podvin & Lecomte 1991):

tC = min(tA + uξ0 + wc−1ρ0, tA + sb, tB + sa). (11)

However, the transmitted wave traveltime is only accepted as a valid
option if the solution comes ‘from within’ the triangular cell. This
means that ‘the gradient of the solution at a grid point should point
into the triangle from which it is updated’ (Kimmel & Sethian
1998). In other words, the ray that traverses to node C should travel
through the cell, and therefore should intersect the AB face. With
the approach of Fomel (1997), this can be determined simply by
testing whether 0 < ξ < 1. When the solution is not from within
the cell, we update tC using the head wave traveltimes only:

tC = min (tA + sb , tB + sa) . (12)

3.3 Existence of a real, monotonic solution

A numerically problematic value of w2 < 0 corresponds to a situ-
ation where the traveltime difference u between nodes A and B is
larger than the time sc that it would take to travel along line AB
at slowness s. There is then no possible orientation for linear wave
fronts that is consistent with the parameters involved. This can oc-
cur when wave fronts travelling through the grid converge, and in
this situation we again update tC using the head wave traveltimes
only as in eq. (12).

Finally, we mention that, as discussed in Kimmel & Sethian
(1998), the solution above requires a non-obtuse triangulation ‘so
that any front entering the side of a triangle has two points to provide
values before the third is computed.’ This requirement ensures that
the FMM wave front marching is performed in a monotonic manner,
with each new traveltime calculated being later than those already
determined. Consider updating the traveltime at node C from those
at nodes A and B in the diagram in Fig. 4. wave fronts oriented
such that rays travelling to C pass through the white region will
yield solutions with tC larger than tA and tB. However, wave fronts
oriented such that rays travelling to C pass through the black region
will yield solutions with tC between tA and tB (this is the situation
illustrated in Fig. 4). This results from the geometry of the obtuse
triangle. If the angle at C is reduced below 90◦ the black region
disappears. If the obtuse angle at C is increased, the black region
will take up a higher proportion of the triangle’s area. The larger the
obtuse angle in a cell, the greater the chance of losing monotonicity
when performing the local update in that cell. A similar situation

Figure 4. A triangular cell lies between three nodes A, B and C. The angle
ACB is obtuse. The cell is divided into two sections coloured white and
black. The white section forms a right triangle with right angle at C. Linear
wave fronts are drawn as thin grey lines.

occurs in the 3-D case, for which the dihedral angles need to be
below 90◦ to ensure monotonicity.

There are many unstructured mesh generators that have been de-
veloped and a thorough discussion of these is beyond the scope of
this paper. To discretize our modelling domains we use two freely
available programs, Triangle (Shewchuk 1996, 2002, 2003) for 2-D
and TetGen (Si 2007; Si 2008a; Si 2008b; Si 2010; Si et al. 2010)
for 3-D. Unfortunately, obtaining a nonobtuse triangularization or
tetrahedralization with their algorithms is not always possible. Al-
though this may be unacceptable for some modelling applications,
if used within an inversion algorithm we may accept a relaxation in
the requirement of monotonicity for two reasons. First, when obtuse
angles exist, it is often possible for the local updates through the
offending cells to maintain monotonicity, depending on the posi-
tioning and orientation of the cells compared to the FMM solution
fronts. Secondly, unless rays turn sharply on a small scale in the
locality of a cell with obtuse angle, then the non-monotonic FMM
solution can be no worse than a box-type marching scheme. Because
of the first-order accuracy of the local updates, the FMM solution on
unstructured grids should be applied to adequately smooth models,
for which rays will not turn sharply on a small scale.

4 E X T E N S I O N T O A 3 - D
T E T R A H E D R A L G R I D

4.1 Solution via Fermat’s principle

To extend the local update to 3-D on a grid of tetrahedral cells,
now consider updating the traveltime at a fourth node, D, based on
the traveltimes at the nodes belonging to the face opposite node D.
Fig. 5 shows the triangular face opposite node D (face ABC). In
an analogous manner to the 2-D scenario, wave fronts through the
tetrahedral cell are assumed to be planar.

Our derivations are similar to the 2-D case and we define ξ as
a normalized distance along line AB, ζ as a normalized distance
along line AC, and ρ as the distance from node D to a point (ξ , ζ )
on face ABC. We define vectors c and b that run along lines AB and
AC respectively. The variables ξ and ζ are linear transforms of the
Cartesian coordinates, and the vectors ξc and ζb can be thought
of as basis vectors for the plane defined by face ABC. Point (ξ 0, ζ 0)
is the normalized projection of node D onto face ABC, and ρ0 is
the length of the normal from node D to the point (ξ 0, ζ 0). We can

Figure 5. A single face of a tetrahedron opposite a fourth vertex D.
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now write

tD(ξ, ζ ) = t(ξ, ζ ) + sρ

= tA + uξ + vζ + sρ, (13)

where u = tB − tA, v = tC − tA and s is the slowness of the
tetrahedral cell. As in the 2-D case, the term t(ξ , ζ ) is the linearly
interpolated traveltime at a point (ξ , ζ ) on face ABC, and the term
sρ is the traveltime for the path from that point to node D.

We define ξ̃ = ξ − ξ0 and ζ̃ = ζ − ζ0 such that the distance ρ is
given by

ρ2 = ‖ξ̃c + ζ̃b‖2 + ρ2
0

= (ξ̃c + ζ̃b)T(ξ̃c + ζ̃b) + ρ2
0

= ξ̃ 2cTc + ζ̃ 2bTb + 2ξ̃ ζ̃cTb + ρ2
0

= c2ξ̃ 2 + b2ζ̃ 2 + 2d2ξ̃ ζ̃ + ρ2
0 (14)

where we have defined

d2 = cTb = cb cos α (15)

and α is the angle at node A between the two vectors c and b. The
norm term in eq. (14) is the distance between points (ξ , ζ ) and (ξ 0,
ζ 0) on face ABC.

Again, we invoke Fermat’s principle and take the derivative of
tD(ξ̃ , ζ̃ ) with respect to both ξ̃ and ζ̃ :

dtD(ξ̃ , ζ̃ )

dξ̃
= d

dξ̃

(
tA + u(ξ̃ + ξ0) + v(ζ̃ + ζ0) + sρ(ξ̃ , ζ̃ )

)

= u + sρ−1(c2ξ̃ + d2ζ̃ ) (16)

and similarly

dtD(ξ̃ , ζ̃ )

dζ̃
= v + sρ−1(b2ζ̃ + d2ξ̃ ). (17)

Setting those derivatives to zero and rearranging gives two equations
in two unknowns,

u−1(c2ξ̃ + d2ζ̃ ) = −s−1ρ(ξ̃ , ζ̃ ) (18a)

v−1(b2ζ̃ + d2ξ̃ ) = −s−1ρ(ξ̃ , ζ̃ ). (18b)

We solve by setting the two left-hand sides equal and rearranging
to obtain

ξ̃ =
(

ub2 − vd2

vc2 − ud2

)
ζ̃ = β

γ
ζ̃ = ηζ̃ , (19)

where we have defined the new quantities β, γ and η. Substituting
ξ̃ = ηζ̃ into eq. (18a) and solving for ζ̃ gives

ζ̃ 2 = u2ρ2
0

s2 (c2η + d2)2 − u2
(
(c2η + d2)η + (b2 + d2η)

) . (20)

We can simplify eq. (20) using the identities

c2η + d2 = uϕ2γ −1 (21a)

d2η + b2 = vϕ2γ −1 (21b)

which provide

ξ̃ = −|β|ϕ−1w̃−1ρ0 (22a)

ζ̃ = −|γ |ϕ−1w̃−1ρ0 (22b)

where we have defined the new quantities

ϕ = cb sin α (23a)

w̃2 = s2ϕ2 − u2b2 − v2c2 + 2uvd2. (23b)

The negative signs in eq. (22) come from a similar argument to that
which lead us to take the negative root in eq. (5). As in the 2-D case,
we require w̃2 ≥ 0 which we discuss further in Section 4.3.

From eq. (18a) we have

ρ = −su−1(c2ξ̃ + d2ζ̃ )

= −sϕ2γ −1ζ̃ . (24)

and eq. (13) now provides

tD = tA + uξ0 + vζ0 + w̃ϕ−1ρ0, (25)

a result remarkably similar to the 2-D case.

4.2 The first-arrival local update

Recall that in the 2-D case, the FMM local update generally con-
siders the transmitted wave traveltime defined in eq. (10) and two
traveltimes associated with travel along cell edges. In the 3-D case,
we must consider six traveltimes in addition to the transmitted wave
traveltime. Three of these travel along the linear edge elements of
the tetrahedron and are calculated as

tA + s ‖AD‖ , tB + s ‖BD‖ , tC + s ‖CD‖ , (26)

where ‖AD‖ is the distance from node A to node D (with similar
definitions for ‖BD‖ and ‖CD‖). The physical interpretation of
these traversals is that of diffraction (Podvin & Lecomte 1991). The
remaining three waves travel along the triangular face elements of
the tetrahedron that connect to node D and are interpreted as head
waves. Those head wave traveltimes can be calculated by reducing
each triangular face to the 2-D scenario in Section 3.

Again, the transmitted wave traveltime in eq. (25) is only accepted
as a valid option if the solution comes from within the tetrahedral
cell, which can be determined simply by testing whether the follow-
ing are all true:

0 < ξ < 1, (27a)

0 < ζ < 1, (27b)

0 < ξ + ζ < 1. (27c)

The same is true of the three head waves travelling along the trian-
gular face elements.

4.3 Existence of a real solution

In eq. (22), we introduced the quantity w̃. A similar quantity w

appeared in the 2-D case. Here we seek an intuitive understanding
of what w̃ represents. To begin, consider the traveltime gradient ∇t
in the plane defined by ABC, which we write as

p = pc ĉ + pbb̂, (28)

Table 1. Coordinates that define a regular tetrahedron
with centroid at the origin.

Node x y z

A 0.943 0.000 −0.333
B −0.471 0.816 −0.333
C −0.471 −0.816 −0.333
D 0.000 0.000 1.000
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Figure 6. The tetrahedron defined in Table 1 as viewed from the +z (left) and +x (right) directions. We define an azimuthal angle θ and a polar angle φ as
illustrated.

where ĉ and b̂ are unit vectors corresponding to the basis vectors c
and b. By taking the dot product of this gradient we can write two
equations in two unknowns

p · c = pcc + pbc cos α = u, (29a)

p · b = pbb + pcb cos α = v, (29b)

for which the solution is

pc = ub − vc cos α

cb sin2 α
, (30a)

pb = vc − ub cos α

cb sin2 α
. (30b)

Figure 7. Absolute error versus source distance for the FMM local update
through the tetrahedral cell in Table 1 and Fig. 6 with θ = 0 and φ = 180.

Figure 8. Absolute error versus φ for the FMM local update through the
tetrahedral cell in Table 1 and Fig. 6 with θ = 0 and source distance 10.0 m.

Table 2. Maximum tetrahedral volumes supplied to TetGen,
the resulting number of grid nodes and tetrahedral cells used
to discretize a cube of 100 m dimensions, and the CPU com-
putation time for the FMM solutions on those grids using a
2.53 GHz dual core machine.

Volume Nodes Cells Time
(m3) (s)

1 307692 1889668 21.76
8 40441 236485 2.56

64 5627 30028 0.30
216 1803 8781 0.08

Table 3. Histogram information for obtuse dihedral angles contained in
the meshes created by TetGen (see Table 2 for more information). Here
we show percentages of cells with maximum dihedral angles within the
indicated bins.

Volume (90,100]◦ (100,110]◦ (110,120]◦ (120,170]◦
(m3)

1 27 per cent 19 per cent 12 per cent 19 per cent
8 27 per cent 19 per cent 13 per cent 19 per cent

64 26 per cent 19 per cent 13 per cent 19 per cent
216 27 per cent 19 per cent 13 per cent 20 per cent

Figure 9. Absolute error versus nodal distance from source for four differ-
ent discretizations. The distances are binned every 10 m and the maximum
error is plotted for each bin (at the locations of the bin centres on the hori-
zontal axis). The legend indicates maximum cell volumes in cubic metres.
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Computing first-arrivals on tetrahedral grids 891

Figure 10. Absolute error versus nodal distance from source for four dif-
ferent initialization radii. The distances are binned every 10 m and the
maximum error is plotted for each bin. The legend indicates initialization
radii in metres.

We can now write

‖p‖2 = pTp = p2
c + p2

b + 2pc pb cos α (31)

and substituting the result in eq. (30) gives

‖p‖2 = u2b2 + v2c2 − 2uvcb cos α

c2b2 sin2 α
. (32)

Comparing to eq. (23) we see that

w̃2 = (s2 − ‖p‖2)ϕ2. (33)

Hence, as in the 2-D case, a numerically problematic value of
w̃2 < 0 corresponds to a situation where the traveltimes at nodes
A, B and C define a traveltime gradient magnitude across face
ABC that is larger than the slowness s. There is then no possible
orientation for planar wave fronts that is consistent with the param-
eters involved. Again, this can occur when wave fronts travelling
through the grid converge, and in this situation we update tD using
the additional diffraction and head wave traveltimes only.

Figure 11. Vertical slices through the synthetic block model used to test our FMM solution for 3-D tetrahedral grids. Model slowness values are indicated by
the colour scale (units are s km−1). White contours are displayed at 0.8 ms intervals. The source in the centre of the model is displayed as a black dot. The
outline of the modelling region and the locations of the slices are indicated in black.
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5 E R RO R A NA LY S I S

5.1 Error in the local update

The major source of modelling error in our FMM solution on a 3-D
tetrahedral grid relates to the assumption of planar wave fronts. For
a point source, the wave fronts will be spherical in a homogeneous
medium and can only be considered effectively planar on the scale
of the tetrahedral cells at relatively large distances from the source.
Here we investigate the error associated with this assumption during
a local update on a tetrahedral cell using eq. (25).

We consider a regular tetrahedron for which each face is an equi-
lateral triangle. One such tetrahedron, positioned with its centroid
at the origin, will have nodes at the coordinates in Table 1. This
tetrahedron is illustrated in Fig. 6.

We position a source at some distance away from the tetrahedron
on the negative side of the z-axis and set the homogeneous slowness
to 1.0 s km−1. We calculate the exact traveltime at all nodes by mul-
tiplying the distance of each node from the source by the slowness.
We then calculate a second, approximate traveltime at node D from
those at nodes A, B and C using eq. (25).

The first plot we present, Fig. 7, shows the absolute difference
between the two traveltimes calculated at node D versus the distance
of the source to the origin (the centroid of the tetrahedron). As
expected, the error reduces as the distance from the source increases,

corresponding to an increased validity of the assumption of planar
wave fronts.

For our second plot, Fig. 8, we allow the location of the source to
move away from the z-axis while maintaining a constant distance of
the source from the origin. We define a spherical coordinate system
with θ the azimuthal angle from +x towards +y and φ the polar
angle equal to zero along the +z direction. With θ = 0 and the
source 10 m from the origin we plot the error in the local update as
the angle φ sweeps across all angles that lead to a solution for the
traveltime at node D such that the solution comes from within the
tetrahedron, as discussed in Section 4.2. Different θ angles provide
similar plots, with the largest errors occurring when the φ angle is
close to 180◦ such that the incoming wave fronts are about parallel
to face ABC.

The plots in Figs 7 and 8 are similar when irregular tetrahedra
are considered, with or without obtuse dihedral angles. The plots
indicate that the orientation of a tetrahedron with respect to the
incoming wave fronts has far less effect on the FMM local update
error than does the distance from the source.

5.2 Errors on a homogeneous grid

We now move on to investigate how the errors associated with the
local updates combine as the FMM solution marches through the

Figure 12. Vertical slices at x = 0 through the synthetic block model used to test our FMM solution for 3-D tetrahedral grids. The slow and fast blocks are
outlined in red and blue, respectively. Yellow contours from the FMM solution are displayed at 1.0 ms intervals. Wave amplitudes from the E3D solution are
plotted in greyscale with the contrast set high to easily identify the leading black wave. The E3D solutions at 3.0 and 6.0 ms are displayed at top and bottom,
respectively. For each plot, the FMM contour at the relevant solution time is coloured green.
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Computing first-arrivals on tetrahedral grids 893

grid. To do so, we use TetGen to mesh a large cube with 100 m
dimensions into many tetrahedral cells. We discretize using several
values for the maximum tetrahedron volume supplied to TetGen as a
meshing constraint. Table 2 shows the maximum volumes used and
the resulting number of grid nodes and cells for each discretization.
Table 3 shows histogram information for the obtuse dihedral angles
contained in the meshes.

We place a source at the origin in the centre of the large homo-
geneous cube and for each discretization we calculate traveltimes
at the grid nodes using the FMM solution and by multiplying the
distance of each node from the source by the slowness (i.e. the exact
solution). Again, we set the homogeneous slowness to 1.0 s km−1.
We initialize the traveltime grid only at the nodes directly surround-
ing the source (i.e. the minimum initialization radius available).

Fig. 9 shows the error in the FMM solution as it marches away
from the source. Because there are so many nodes in each grid, we
bin the nodes by their distances from the source every 10 m and we
plot the maximum errors in each bin. As expected, Fig. 9 shows an
increase in error with a decreasing level of discretization (grids with
fewer, larger cells). It also indicates that for a given grid, the errors
in the numerical FMM solution begin to level off with distance from
the source. This is expected considering Fig. 7 which tells us that
the local update errors reduce considerably away from the source.
We emphasize here that we provide Fig. 9 to indicate the mentioned
error trends; the absolute errors can be reduced by improving on the
near-source initialization accuracy, as we show later.

Finally, we investigate the effect of the initialization radius on the
error. We use the finest discretization above and use initialization

radii of 2, 4, 8 and 16 m. Fig. 10 shows the error in the FMM solution
as it marches away from the source, with the nodal distances again
binned as before. The initialization radius shows an approximately
logarithmic relationship with the error in this example, the error
increasing linearly as the radius decreases every power of 2. To
reduce this important source of error, the initialization radius should
be made as large as possible. However, this requires a homogeneous
near-source region. If heterogeneity exists near a source then the
discretization in that region should be changed to use finer cells,
as is performed in Rawlinson & Sambridge (2004b) as advocated
by Kim & Cook (1999). This is one of the great advantages of
using an unstructured discretization as finer cells can be added only
where needed. If the receivers lie in a homogeneous region, another
possible work-around would be to use the reciprocity principle to
swap sources and receivers.

6 F M M S O LU T I O N E X A M P L E S O N 3 - D
T E T R A H E D R A L G R I D S

6.1 A simple block model

Here we show results for a simple model built from two blocks
with anomalous slownesses of 0.375 and 0.167 s km−1 inside a
background of 0.250 s km−1 (velocities of 2.67, 6.00 and 4.00
km s−1, respectively). The modelling region has lateral dimensions
of 100 m × 200 m and a depth of 100 m. The two blocks are cubes
of dimension 40 m. The centres of the two blocks are separated by

Figure 13. As in Fig. 12 but at times 12.0 and 16.0 ms at top and bottom, respectively.
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80 m. A single source is placed in the centre of the model, the
midpoint between the centres of the two blocks.

We discretize the model into a tetrahedral grid using TetGen,
constraining the grid cells to have a maximum volume of 8 m3.
The resulting grid contains 79 987 nodes and 475 896 tetrahe-
dral cells. The traveltimes at each node in the grid are calculated
using the FMM with our local update procedure for tetrahedral
cells.

Fig. 11 shows vertical slices through the model, bisecting both
blocks along symmetry planes. Traveltime contours (isochrons) ev-
ery 0.8 ms are displayed on the slices. As expected, wave fronts
slow down (smaller separation between isochrons) as they travel
through the slower part of the model, and they speed up (larger
separation between isochrons) as they travel through the faster part
of the model. Furthermore, refraction, diffraction and head wave
effects are evident as the solution fronts pass across the boundaries
between the different regions. The 3-D results are comparable to
those we obtain via an FMM solution on similar 2-D scenarios.

We compare our solution against that obtained using the 3-D
elastic seismic wave propagation program E3D (Larsen & Schultz
1995). The source for the E3D solution was a Ricker Wavelet with
a centre frequency of 750.0 Hz, chosen to produce a wave front
that is well enough localized to allow a comparison with our FMM
solution. The spatial discretization for the E3D solution is a regular

Figure 14. A perspective view of the 3-D Voisey’s bay model, looking
down from the south. At top, the ovoid surface is red with black cell edges
to indicate the discretization. At bottom, the ovoid surface is transparent and
three traveltime contours (non-red) have been added for times of 40, 60 and
80 ms. The location of the seismic source is indicated by a black dot.

rectilinear grid using cubic cells with dimensions of 0.25 m. The
time steps for the solution are at 0.02 ms intervals. Modelling accu-
racy considerations lead to conditions on the spatial discretization
and time stepping that depend on the source wavelength and model
slowness values. Because of those considerations, the computa-
tional requirements of the E3D program and the computing power
available to us, we have altered the slowness values to 0.250 and
0.167 s km−1 inside a background of 0.200 s km−1 for this compar-
ison. This reduces the refraction, diffraction and head wave effects
slightly. Figs 12 and 13 show the same vertical slice through the
middle of the two blocks as seen at top in Fig. 11. The wave ampli-
tudes from the E3D solution are plotted in greyscale with contours
from our FMM solution overlayed. Our contours agree well with the
leading waves in the elastic wave solution, although the amplitudes
at later times are reduced on the left of the images due to diffraction
effects associated with the slow block.

6.2 A model of the Voisey’s Bay ovoid deposit

We now move on to a more complicated model, one that would
be problematic to discretize on a rectilinear grid and is therefore
representative of the types of Earth models that we are interested
in dealing with. The Voisey’s Bay nickel-copper–cobalt deposit in
Labrador is considered to be one of the most important recent
mineral discoveries in Canada. The physical property data indicate
typical velocities of 4.4 km s−1 for the massive sulphide ore body,

Figure 15. As in Fig. 14 but looking down from the northeast.
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Computing first-arrivals on tetrahedral grids 895

Figure 16. As in Fig. 14 but looking sideways from the south east. The
traveltime contours have been clipped to better show depressions in their
surfaces.

from herein referred to as the ovoid, and 6.1–6.5 km s−1 for the
surrounding rock (Duff & Hurich 2006). A triangulated surface
model for the ovoid has been generated from drillcore logging and
can be used to constrain the meshing of our tetrahedral modelling
grid.

Our modelling region has lateral dimensions of 800 m × 1000
m and a depth of 300 m. We discretize the ovoid model into a
tetrahedral grid using the TetGen program, constraining the grid
cells to have a maximum volume of 100 m3. The resulting grid
contains 75 602 nodes and 444 984 tetrahedral cells. Velocities used
for the background and ovoid are 6.3 and 4.4 km s−1, respectively
(slowness values of 0.16 and 0.23 s km−1, respectively). We use an
initialization radius of 50 m.

Figs 14–16 show the ovoid surface and three isochron surfaces
through the 3-D traveltime solution. The solution behaves as ex-
pected, with wave fronts slowing through the ovoid as evident from
the depressions in the isochron surfaces.

7 D I S C U S S I O N

We have extended the Fast Marching Method for use on unstructured
3-D tetrahedral grids by developing a local update for such grids.
The update has many similarities to that developed by Fomel (1997)
for unstructured 2-D triangular grids and makes intuitive sense.
Our method has been tested numerically and the examples we have
shown display the behaviours expected of seismic waves travelling
through heterogeneous velocity distributions. An error analysis has
been performed that provided results expected from consideration
of the assumptions made within the FMM local update calculations.
This analysis indicates some basic guidelines for designing grids
when modelling accuracy is a concern.

We recognize that our approach is only first-order accurate, and
worse if obtuse dihedral angles exist in the tetrahedral mesh. This
work is an important first step in developing a more rigorous solution
on 3-D unstructured grids. We hope that future work by ourselves
or others will extend our methods to higher-order accuracy and to
ameliorate the issue of obtuse dihedral angles.

Discretizing the subsurface with unstructured 2-D triangular and
3-D tetrahedral grids allows for efficient generation of complicated
subsurface geometries that are difficult to represent with rectilinear
grids. First-arrival seismic traveltimes can now be calculated for
velocity models built on unstructured 3-D tetrahedral grids. Given
a velocity model defined as a surface of tessellated triangles, one
can use TetGen or other meshing software to generate a tetrahe-
dral modelling mesh that is constrained by that surface. This is
the procedure we have taken in the examples in this manuscript.
The constraining surfaces could also define arbitrarily shaped re-
flectors, allowing reflection and transmission branches to be readily
computed. If, instead, a velocity model is provided on a tetrahedral
mesh, TetGen or other meshing software can be used to refine this
mesh for modelling purposes, ensuring that the discretization is at
the desired level within particular regions of the mesh. If velocity
information is provided as densely sampled points within the mod-
elling volume, a mesh can be generated using the methods of Rüger
& Hale (2006), although TetGen is also capable of meshing this
same information.

Our work opens the door to inversion of first-arrival data on
unstructured 3-D grids for complicated, real-life scenarios. For such
an application, errors present in the forward modelling must be
kept small. The acceptability of the first-order accuracy can only be
determined on a case-by-case basis. However, due to uncertainties
inherent in survey data, and computing power limitations on the
discretization used, the first-order modelling accuracy is expected
to be acceptable in many cases.
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