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Abstract. In this paper, we propose a wave-equation-based

travel-time seismic tomography method with a detailed de-

scription of its step-by-step process. First, a linear relation-

ship between the travel-time residual 1t = T obs
− T syn and

the relative velocity perturbation δc(x)/c(x) connected by

a finite-frequency travel-time sensitivity kernel K(x) is the-

oretically derived using the adjoint method. To accurately

calculate the travel-time residual 1t , two automatic arrival-

time picking techniques including the envelop energy ratio

method and the combined ray and cross-correlation method

are then developed to compute the arrival times T syn for syn-

thetic seismograms. The arrival times T obs of observed seis-

mograms are usually determined by manual hand picking in

real applications. Travel-time sensitivity kernel K(x) is con-

structed by convolving a forward wavefield u(t,x) with an

adjoint wavefield q(t,x). The calculations of synthetic seis-

mograms and sensitivity kernels rely on forward modeling.

To make it computationally feasible for tomographic prob-

lems involving a large number of seismic records, the for-

ward problem is solved in the two-dimensional (2-D) ver-

tical plane passing through the source and the receiver by

a high-order central difference method. The final model is

parameterized on 3-D regular grid (inversion) nodes with

variable spacings, while model values on each 2-D forward

modeling node are linearly interpolated by the values at its

eight surrounding 3-D inversion grid nodes. Finally, the to-

mographic inverse problem is formulated as a regularized op-

timization problem, which can be iteratively solved by either

the LSQR solver or a nonlinear conjugate-gradient method.

To provide some insights into future 3-D tomographic inver-

sions, Fréchet kernels for different seismic phases are also

demonstrated in this study.

1 Introduction

Seismic tomography is one of the core methodologies for

imaging the structural heterogeneity of the Earth’s interior

at a variety of scales. Ever since the pioneering works of Aki

and Lee (1976) and Dziewonski et al. (1977), tomographic

images have provided crucial information for the understand-

ing of plate tectonics, volcanism, and geodynamics (e.g., Ro-

manowicz, 1991; Liu and Gu, 2012; Zhao, 2012). Seismic

tomography itself has also gone through significant devel-

opment over the last 3 decades, including advances in both

methodology and data usage.

In the first 2 decades of its history, seismic tomography

was mainly based on the ray theory which assumes that seis-

mic travel-time is determined by the structure along the in-

finitely thin ray path only. However, because of scattering,

wave front healing, and other finite-frequency effects, seis-

mic measurements (such as travel-time and amplitude), es-

pecially those made on broadband recordings, are sensitive

to three-dimensional (3-D) structures off the ray path (e.g.,

Marquering et al., 1999; Dahlen et al., 2000; Tape et al.,

2007). Ray theory is actually only valid when the scale length

of the variation of material properties is much larger than the

seismic wavelength (Rawlinson et al., 2010). To take into ac-

count the sensitivity to off-ray structures, finite-frequency to-

mography methods that construct 2-D or 3-D travel-time and

Published by Copernicus Publications on behalf of the European Geosciences Union.



1152 P. Tong et al.: Part 1: Method

amplitude sensitivity kernels are proposed, including those

based on the paraxial approximation and dynamic ray trac-

ing (e.g., Marquering et al., 1999; Dahlen et al., 2000; Tian

et al., 2007; Tong et al., 2011) and those based on the normal

mode theory (e.g., Zhao et al., 2000; Zhao and Jordan, 2006;

To and Romanowicz, 2009). Tomographic models with im-

proved resolutions were reported by recent finite-frequency

tomographic studies (e.g., Montelli et al., 2004; Hung et al.,

2004, 2011; Gautier et al., 2008), although comparison to

ray-based tomography remains controversial (de Hoop and

van der Hilst, 2005a; Dahlen and Nolet, 2005; de Hoop and

van der Hilst, 2005b). The underlying problem of the finite-

frequency tomography based on paraxial approximation and

dynamic ray tracing is that its kernel computation still re-

lies on the ray theory, although it was devised to account

for non-geometrical finite-frequency phenomena. In the last

decade or so, rapid advances in high-performance comput-

ing and forward modeling techniques have made it feasible

to solve the seismic wave equations in realistic Earth mod-

els by fully numerical methods (e.g., Komatitsch and Tromp,

2002a, b; Komatitsch et al., 2004; Operto et al., 2007). This

opens the way to compute sensitivity kernels based on nu-

merical simulation of the full seismic wavefield, avoiding

the use of approximate theories (e.g., Liu and Tromp, 2006,

2008; Fichtner et al., 2009). It also made the conceptual

wave-equation-based seismic inversion methods such as the

one presented by Tarantola (1984) feasible in realistic ap-

plications (Tape et al., 2009; Fichtner and Trampert, 2011;

Zhu et al., 2012). To our best knowledge, adjoint tomogra-

phy (Tromp et al., 2005; Fichtner et al., 2006), scattering in-

tegral methods (L. Zhao et al., 2005; Chen et al., 2007b),

and full waveform inversion (FWI) in the frequency domain

(Pratt and Shipp, 1999; Operto et al., 2006) are among the

most popular tomographic techniques based upon solving

full wave equations. FWI in the frequency domain has been

mainly used in exploration problems (e.g., Virieux and Op-

erto, 2009; Lee et al., 2010). Adjoint tomography and scat-

tering integral tomography are closely related to each other,

and a detailed comparison between adjoint tomography and

scattering integral tomography can be found in Chen et al.

(2007a). For brevity, we restrict our following discussions to

adjoint tomography (Liu and Gu, 2012).

Adjoint tomography is currently one of the most popular

and promising tomographic methods for resolving strongly

varying structures. It takes advantage of full 3-D numerical

simulations in forward modeling and sensitivity kernel calcu-

lation, often iteratively improving models through optimiza-

tion techniques (Tromp et al., 2005; Tape et al., 2007). The

use of full numerical simulations allows for the freedom of

choosing either 1-D or 3-D reference models and accurate

calculations of seismograms (Tong et al., 2014a, c) and sen-

sitivity kernels for complex models (Liu and Tromp, 2006,

2008). Using this approach, Tape et al. (2009, 2010) obtained

a 3-D velocity model of the southern California crust that

captures strong local heterogeneity up to ±30%. Similarly,

Zhu et al. (2012) generated a tomographic model of the Euro-

pean upper mantle based on adjoint tomography that reveals

nice correlations between structural features and regional

tectonics and dynamics. Similarly, Rickers et al. (2013) pre-

sented a 3-D S wave velocity model of the North Atlantic

region, revealing structural features in unprecedented detail

down to a depth of 1300 km. These successful applications

reveal the promising future of next-generation seismic tomo-

graphic models based on full numerical simulations. How-

ever, the expensive computation cost associated with adjoint-

type of wave-equation-based tomographic methods, espe-

cially for 3-D problems, is still a major stumbling block to

its wider application. For example, for a moderate number

of three-component seismograms, 0.8 million and 2.3 mil-

lion central processing unit hours were used to generate the

tomographic models of the southern California crust and the

European upper mantle, respectively (Tape et al., 2009; Zhu

et al., 2012). The severity of the cost issue may be remedied

when simulations are ported to the graphic processing unit

(GPU) hardware (e.g., Komatitsch et al., 2010; Michéa and

Komatitsch, 2010). However, ray-based tomographic meth-

ods remains the most popular and accessible techniques for

mapping the heterogeneous structures of the Earth’s interior

(e.g., Li et al., 2008; Hung et al., 2011; Tong et al., 2012;

Zhao et al., 2012).

As mentioned above, full 3-D numerical simulations in

forward modeling and sensitivity kernel calculations guar-

antee the accuracy of synthetic seismograms and sensitiv-

ity kernels for 3-D complex models. However, they also

make adjoint tomography computationally demanding and

even unaffordable. To strike a balance between the com-

putational efficiency and accuracy of full wave-equation-

based tomographic methods, we propose conducting the

forward modeling and sensitivity kernel calculation in the

2-D source-receiver vertical plane by a high-order finite-

difference scheme. As we will show, if only travel-time mea-

surements are considered, this 2-D approximation offers ac-

ceptable accuracy. Meanwhile, by numerically solving 2-D

wave equations, finite-frequency effects such as wavefront

healing are naturally taken into account, and the accuracy of

sensitivity kernels in complex heterogeneous models is also

improved. Although forward modelings are restricted to 2-

D planes, we still plan to invert for 3-D tomographic mod-

els on a 3-D inversion grid. The 2-D forwarding modeling

and the 3-D tomographic inversion are linked by express-

ing the model parameters (such as velocity perturbation) at

each 2-D forward modeling grid node as a linear interpo-

lation of the model parameters at its surrounding 3-D in-

version grid nodes. We name the resultant 2-D–3-D tomo-

graphic method the wave-equation-based travel-time seismic

tomography (WETST). Compared with the 3-D–3-D adjoint

tomography based on the spectral element method (Tromp

et al., 2005; Fichtner et al., 2006), this 2-D–3-D WETST

based upon a 2-D finite-difference scheme is generally more

computationally affordable. This also entails that WETST

Solid Earth, 5, 1151–1168, 2014 www.solid-earth.net/5/1151/2014/



P. Tong et al.: Part 1: Method 1153

can be applied to tomographic inversions involving signifi-

cant amounts of data based on even moderate computational

resources.

Arrival time picking is another important issue for travel-

time seismic tomography. Since the early era of ray-based

seismic tomography, researchers have mainly relied on man-

ually picked arrival times to map subsurface structures (e.g.,

Aki and Lee, 1976; Zhao et al., 1992). Arrival times are usu-

ally picked within time windows centered at the predicted

travel times (Kennett and Engdah, 1991; Maggi et al., 2009).

In recent years, increasing numbers of deployed broadband

seismic arrays have resulted in the proliferation of seismic

data. To increase efficiency and reduce the amount of man-

ual labor and human errors in seismic data processing, fast

and automatic travel-time picking algorithms with high ac-

curacy are highly demanded in order to process vast amount

of seismic recordings. Indeed, various techniques have been

presented for the automatic/semi-automatic detecting and

picking of the arrivals of different seismic phases, and the

most widely used of which is the short-term-average (STA)

to long-term-average (LTA) ratio method and its variations

(e.g., Coppens, 1985; Baer and Kradolfer, 1987; Saari, 1991;

Earle and Shearer, 1994; Han et al., 2010). Zhang et al.

(2003) developed an automatic P wave arrival detection and

picking algorithm based on the wavelet transform and Akaike

information criteria. The cross-correlation method is another

routinely used technique to obtain the travel-time anomalies

of broadband pulses, which is especially favored by finite-

frequency tomographic applications (e.g., Luo and Schuster,

1991; Dahlen et al., 2000; Tape et al., 2007). However, the

quality of picked arrivals by these methods may vary in accu-

racy for data sets of different signal-to-noise ratio (SNR), and

often only arrivals on low-noise seismograms can be effec-

tively picked (Akram, 2011). Specifically, the validity of the

correlation-based methods requires that the synthetic seismo-

grams be reasonably similar to the observed seismograms.

Less restrictive automatic arrival picking algorithms need to

be further developed. In this study, we propose two different

automatic arrival-time determination methods (Sect. 3) that

form an integral part of our wave-equation-based travel-time

seismic tomography method.

When arrival-time data and sensitivity kernels are deter-

mined or computed, wave-equation-based travel-time seis-

mic tomography is cast as an optimization problem. Model

parameterization, regularization, and methods solving the

optimization problem are discussed in Sects. 4 and 5. Finally,

examples of sensitivity kernels for different seismic waves

are shown in Sect. 6, which provide the basis for future to-

mographic inversions with various seismic phases. This pa-

per focuses on theoretical derivation of the wave-equation-

based travel-time seismic tomography. An application of the

WETST method is presented in the second paper (Tong et al.,

2014b).

2 Tomographic equation

In this section, we set up a linear relationship between the

perturbation of arrival time and velocity perturbation in a ref-

erence model.

2.1 Travel-time residual

Travel-time seismic tomography generally inverts travel-time

residuals of some seismic phases to map internal Earth struc-

tures. A travel-time residual 1t corresponding to the event

occurred at xs, and the seismic station located at xr is written

as,

1t = T obs
− T syn, (1)

where the observed travel-time T obs is automatically or man-

ually picked on recorded seismogram d(t), and the synthetic

arrival time T syn is predicted based on a reference model. In

geometrical ray theory, T syn is usually computed by integrat-

ing the slowness along a travelling path.

If the corresponding synthetic seismogram u(t) in the ref-

erence model is available, the travel-time residual 1t can

be approximated by the cross-correlation technique (Dahlen

et al., 2000):

1t ≈
1

Nr

T∫
0

w(t)u̇(t) [d(t)− u(t)]dt, (2)

where

Nr =

T∫
0

w(t)u(t)ü(t)dt,

and w(t) is a weight function over the time interval [0,T ]

that can be used to isolate particular seismic phases (Tromp

et al., 2005). The accuracy of this approximation improves

as data and synthetic pulse becomes more similar, i.e., wave-

form perturbation d(t)− u(t) in Eq. (2) becomes tiny. As-

suming infinitesimal perturbations, Eq. (2) becomes

δt =
1

Nr

T∫
0

w(t)u̇(t)δu(t)dt, (3)

which is used further to set up the relationship between

travel-time residual and

velocity perturbation.

2.2 Relationship between travel-time residual and ve-

locity perturbation

We consider seismic wave propagation in a two-dimensional

(2-D) vertical plane which contains the source xs and the

receiver xr. Within this plane, the seismic wavefield of a par-

ticular phase (without mode conversion) could be assumed

www.solid-earth.net/5/1151/2014/ Solid Earth, 5, 1151–1168, 2014



1154 P. Tong et al.: Part 1: Method

to satisfy the 2-D acoustic wave equation with initial and

boundary conditions,
∂2

∂t2
u(t,x)=∇ ·

[
c2(x)∇u(t,x)

]
+ f (t)δ(x− xs), x ∈ S

u(0,x)=
∂u(0,x)
∂t
= 0, x ∈ S,

n̂ ·
[
c2(x)∇u(t,x)

]
= 0, x ∈ ∂S,

(4)

where u(t,x) is the displacement field, c(x) is either the

P or S wave velocity model, f (t) is the source time func-

tion for the point source at xs, and n̂ is the normal direction

of the boundary ∂S. For a perturbation δc(x) of the veloc-

ity model c(x), a consequent perturbed displacement wave-

field δu(t,x) will be generated. In the framework of first-

order or Born approximation (e.g., Aki and Richards, 2002;

Tromp et al., 2005; Tong et al., 2011), the perturbed wave-

field δu(t,x) is the solution to the following wave equation

with subsidiary conditions:


∂2

∂t2
δu(t,x)=∇ ·

[
c2(x)∇δu(t,x)+ 2c(x)δc(x)∇u(t,x)

]
, x ∈ S,

δu(0,x)=
∂δu(0,x)

∂t
= 0, x ∈ S,

n̂ ·
[
c2(x)∇δu(t,x)+ 2c(x)δc(x)∇u(t,x)

]
= 0, x ∈ ∂S.

(5)

Multiplying an arbitrary test function q(t,x) on both sides of

the first equation in Eq. (5) and then integrating in the surface

S and the time interval [0,T ] gives us

T∫
0

dt

∫
S

q(t,x)
∂2

∂t2
δu(t,x)dx (6)

=

T∫
0

dt

∫
S

q(t,x)∇

·

[
c2(x)∇δu(t,x)+ 2c(x)δc(x)∇u(t,x)

]
dx,

which is equal to

∫
S

dx

T∫
0

{
∂

∂t

[
q(t,x)

∂

∂t
δu(t,x)− δu(t,x)

∂

∂t
q(t,x)

]
(7)

+δu(t,x)
∂2

∂t2
q(t,x)

}
dt

=

T∫
0

dt

∫
S

δu(t,x)∇

·

[
c2(x)∇q(t,x)

]
dx−

T∫
0

dt

∫
S

∇

·

[
δu(t,x)c2(x)∇q(t,x)

]
dx

+

T∫
0

dt

∫
S

∇ · {q(t,x)

[
c2(x)∇δu(t,x)+ 2c(x)δc(x)∇u(t,x)

]}
dx

−

T∫
0

dt

∫
S

2c(x)δc(x)∇q(t,x) · ∇u(t,x)dx.

As travel-time residual δt in Eq. (3) is measured at the re-

ceiver location xr, Eq. (3) can be alternatively expressed as

δt =
1

Nr

T∫
0

w(t)

∫
S

∂u(t,x)

∂t
δu(t,x)δ(x− xr)dxdt. (8)

Summing up Eq. (7) and Eq. (8), using the second and third

relationships in Eq. (5), and assuming that
∂2

∂t2
q(t,x)−∇ ·

[
c2(x)∇q(t,x)

]
=

1
Nr
w(t)

∂u(t,x)
∂t

δ(x− xr), x ∈ S,

q(T ,x)=
∂q(T ,x)
∂t
= 0, x ∈ S,

n̂ · c2(x)∇q(t,x)= 0, x ∈ ∂S,

(9)

we can get a relationship

δt =−

T∫
0

dt

∫
S

[
2c2(x)∇q(t,x) · ∇u(t,x)

] δc(x)
c(x)

dx. (10)

Note that q(t,x) is not longer an arbitrary function. Instead,

it satisfies Eq. (9) and represents a wavefield generated re-

versely in time by backpropagating the windowed and nor-

malized velocity signal recorded at the receiver for the ve-

locity model c(x), also known as the adjoint wavefield (e.g.,

Liu et al., 2004; Tromp et al., 2005; Fichtner et al., 2006).

By defining the travel-time sensitivity kernel

K(x;xr,xs)=−

T∫
0

[
2c2(x)∇q(t,x) · ∇u(t,x)

]
dt, (11)
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Eq. (10) provides a concise mathematical expression of the

relationship between travel-time residual δt and relative ve-

locity perturbation δc(x)/c(x)

δt =

∫
�

K(x;xr,xs)
δc(x)

c(x)
dx. (12)

The travel-time kernel K(x;xr,xs) is a weighted convolu-

tion of forward wavefield gradient ∇u(t,x) and the adjoint

wavefield gradient ∇q(t,x), which can be obtained by solv-

ing Eqs. (4) and (9). Assuming small perturbations, we can

set 1t in Eq. (1) equal to δt , and Eq. (12) becomes

T obs
− T syn

=

∫
�

K(x;xr,xs)
δc(x)

c(x)
dx. (13)

We call relation (13) the tomographic equation of wave-

equation-based travel-time seismic tomography. Once the

observed arrival time T obs and synthetic arrival time T syn are

measured or calculated, tomographic Eq. (13) can be inverted

to infer the relative velocity perturbation δc(x)/c(x).

Before proceeding to the next section, we should keep in

mind that T obs
− T syn in Eq. (13) is theoretically needed to

be a finite-frequency travel-time residual. Due to the finite-

frequency and dispersive effects, seismic waves of different

frequencies may have different sensitivities to the subsurface

structures and arrive at different times. To measure physi-

cally meaningful travel-time residual T obs
−T syn, we should

first ensure that the observed data d(t) are filtered through

a frequency band, which is generally selected to be consis-

tent with the frequency spectrum of the synthetic seismogram

s(t). Hereinafter, d(t) will represent the bandpass-filtered

data.

3 Arrival time picking

We first discuss how to pick the arrival times of a particu-

lar seismic phase on observed and synthetic seismograms,

i.e., T obs and T syn in Eq. (13). Since any errors in arrival

times will distort the velocity anomalies, this step is cru-

cial for travel-time seismic tomography. Although manual

arrival-picking is time-consuming and labor intensive, it is

still one of the most reliable and stable techniques to deter-

mine the arrival times of specific seismic phases on observed

seismograms. For example, the first-arrivals picked by ana-

lysts of the combined seismic network in Japan (known as

the JMA Unified Catalogue) have accuracies of about 0.1 s

for P arrival and 0.1–0.2 s for S arrival (Tong et al., 2012).

Since there is not yet an automatic, accurate, and robust ar-

rival we prefer to use manually picked arrival times T obs on

observed seismograms for tomographic inversion purpose.

Regarding the arrival time T syn of a particular phase on

synthetic seismograms, we could also use manual picking.

However, extra subjective errors will be introduced into the

travel-time residual 1t and further affect final tomographic

results. Since synthetic seismograms are generated by nu-

merical methods, the errors come mainly from numerical dis-

persion and can be controlled (but cannot be avoided) by

employing accurate forward solver or fine meshes in for-

ward numerical modeling. For low-noise seismograms, au-

tomatic time-picking schemes such as the STA/LTA method

have been proven to be accurate and efficient for detecting

the arrivals of different seismic phases (e.g., Saari, 1991;

Han et al., 2010). In this study, we present a new envelope

energy ratio method to pick up the arrival times on syn-

thetic seismograms, which has a better performance than the

STA/LTA method. On the other hand, if the starting model

m0 for a tomographic inversion has (or is near) a simple ge-

ometry where traveling paths can be easily and accurately

determined, the combined ray and cross-correlation method

developed later can be used to obtain arrival times of partic-

ular phases on synthetic seismograms.

3.1 Envelop energy ratio method

We give a brief introduction to the STA/LTA method and then

discuss the envelop energy ratio (EER) method, which is an

improved version of the STA/LTA algorithm. Let u(t) repre-

sent a seismogram with a dominant period of T0 in the time

window [0,T ], then the average energies in the short- and

long-term windows preceding the time t are defined as

S(t)=
1

αT0

t∫
t−αT0

u2(τ )dτ,

L(t)=
1

βT0

t∫
t−βT0

u2(τ )dτ,

(14)

where t ∈ [0,T ] and 0< α < β are coefficients determining

the lengths of the short and long-term time windows and

should be determined by the user. Usually, α and β are cho-

sen to be 2≤ α ≤ 3 and 5≤ β ≤ 10, respectively (Earle and

Shearer, 1994). u(τ) is assumed to be zero for τ < 0. Let us

define the ratio

R(t)=
S(t)

L(t)
, (15)

and if the ratio R(t) first exceeds a user-defined threshold at

t0, t0 is considered to be the approximate onset time of the

first arrival on the seismogram u(t) (Munro, 2004). It is also

claimed that the maximum value of the derivative dR(t)/dt

may be closer to the break time of the first arrival (Wong

et al., 2009).

Into the envelop function of seismogram e(t)= |u(t)+

iH [u(t)] |, where H [u(t)] denotes the Hilbert transform of

u(t), can be also used in seismic data analysis (e.g., Baer

and Kradolfer, 1987; Maggi et al., 2009). Since the enve-

lope function remains positive at zero crossings among dif-

ferent phase arrivals, average energy taken from an envelope
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Figure 1. S arrival time-picking using (a) the STA/LTA method and

(b) the envelop energy ratio (EER) method for the synthetic seis-

mogram in (c), which is the seismogram for trace number 26 in (d).

Panel (d) displays synthetic seismograms recorded by 51 stations

with an equal spacing of 2 km at the surface, which are generated by

an earthquake at the depth 12.0 km directly below the 26th station.

The computational domain is a crust-over-mantle model. The crust

has a thickness of 30.0 km and is homogeneous with the S wave

velocity 3.2kms−1 in the crust and 4.5kms−1 in the mantle. In (c)

and (d), the arrival times of S and SmS phases determined based

on the STA/LTA and EER methods are labeled with brown and blue

lines, respectively. The theoretical arrivals are marked by red lines.

function may be a better measure of the signal strength (Baer

and Kradolfer, 1987; Earle and Shearer, 1994). Meanwhile,

Wong et al. (2009) proposed the modified energy method

which has excellent performance in determining the break

time of first arrival. By incorporating the envelope function

and the modified energy method (Wong et al., 2009), we de-

fine the following envelop energy ratio function to determine

the arrival time of the considered seismic phase filtered by

the window function w(t)

r(t)=

∫ t+αT0

t−βT0
w(τ)e2(τ )dτ∫ t

t−γ T0
w(τ)e2(τ )dτ

, (16)

where α ≥ 0 and β ≥ γ ≥ 1. The peak of the ratio function

r(t) is very close to the onset time of the considered seismic

phase.

To show the performance of the EER method, we ap-

ply it to shear-wave synthetic seismograms generated by an

earthquake at 12.0 km depth in a homogeneous crust with

a thickness of 30.0 km based on a high-order finite-difference

method (in Appendix). Fifty-one surface stations with an

equal spacing of 2.0 km are used to record seismograms.

α = β = γ = 1.0 are chosen in Eq. (16). Figure 1a–c shows

the S wave arrival-time picking using the STA/LTA and EER

methods on the seismogram for trace number 26 (Fig. 1d).

We can see that S arrival time determined by the EER method

is very close to the theoretical arrival time with an error

smaller than 0.05 s (Fig. 1b and c). For the STA/LTA method,

the threshold value is set to be 1.0× 10−8, and the obtained

S arrival time is 0.24 s later than the theoretical arrival time

(Fig. 1a and c). Note that an error of 0.24 s is unacceptable in

travel-time inversion for local structures. We further show S

and SmS arrival times on all 51 seismograms in Fig. 1d. For

the direct S wave, results of both STA/LTA and EER meth-

ods are relatively close to the theoretical arrival times, with

errors around 0.3 s and less than 0.1 s, respectively. However,

for SmS phase, the STA/LTA algorithm is not able to give

accurate estimates on the breaking times. In comparison, the

EER method gives picked arrivals with accuracy similar to

the direct S wave case, and 70 % of the errors are still less

than 0.1 s. We have fixed all parameters for the STA/LTA

and EER methods in picking the S and SmS arrival times.

Actually, the accuracy of time picking on any single seismo-

gram can be improved by slightly tuning some parameters,

such as the threshold value for the STA/LTA method and the

lengths of the time windows for both methods. We also find

that the accuracy of the STA/LTA method is very sensitive to

the threshold value and it is not an easy task to determine an

appropriate threshold in practice. For the EER method, how-

ever, it is simple to locate the peak of the ratio function r(t).

This implies that the EER method could be a better choice

for arrival-time picking on synthetic seismograms.

3.2 Combined ray and cross-correlation method

Because of the nonlinearity of seismic inverse problems,

seismic tomography usually relies on an iterative method

to find the optimal model. If the starting model m0 for

travel-time seismic tomography is simple (e.g., a 1-D lay-

ered model) and traveling paths of particular phases can be

easily traced, the arrival times T
syn

0 of synthetics in m0 can

be accurately determined based on ray theory. Meanwhile,

we may expect that synthetic seismograms in the (i+ 1)th

model mi+1 are reasonably similar to those in the ith model

mi (i ≥ 0), and the arrival-time shift δti+1,i of a particular

phase in models mi+1 and mi can be calculated with high
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Figure 2. S and SmS arrival times on seismograms computed in

two models, m0 and m1 (a). Numerical computation in m0 is the

same as the example shown in Fig. 1. S wave velocity in m1 has

a perturbation of 8% with respect to m0. Black squares, red circles,

and blue stars correspond to theoretical arrival times in m0, theoret-

ical arrival times in m1, and arrival times m1 computed by using the

combined ray and cross-correlation method, respectively. Errors of

S (red circles) and SmS (blue circles) arrival times determined by

using the combined ray and cross-correlation method (b).

accuracy by maximizing the cross-correlation equation,

max
δti+1,i

∫ T
0 w(τ)s(τ ;mi+1)s(τ − δti+1,i ;mi )dτ[∫ T

0 w(τ)s
2(τ ;mi+1)dτ

∫ T
0 w(τ)s

2(τ − δti+1,i ;mi )dτ
]1/2

, (17)

where w(t) is the time window function used to isolate the

considered phase (Liu et al., 2004). Consequently, the arrival

time T
syn

i+1 of the synthetic seismogram in model mi+1 satis-

fies the following relationship,

T
syn

i+1 = T
syn

0 +

i∑
j=0

δtj+1,j . (18)

Since T
syn

0 and δtj+1,j are calculated with ray theory and

cross-correlation method, respectively, Eq. (18) is called the

combined ray and cross-correlation method.

Continuing the numerical example shown in the section of

the EER method, we intend to verify the validity of the com-

bined ray and cross-correlation method. Let m0 be the crust

model with an S wave velocity of 3.2kms−1 and a thick-

ness of 30.0 km. S wave velocity in m1 is assumed to be

3.456kms−1 which has a perturbation of 8.0% with respect

to m0. Synthetic seismograms generated by an earthquake

at 12.0 km depth are calculated and recorded by 51 stations

at the surface in both m0 and m1. For models m0 and m1,

theoretical arrival times of S and SmS phases at each sta-

tion can be calculated based on the ray theory (see solid red

circles and black squares in Fig. 2a). Based on Eq. (17), we

also measure arrival shifts of S and SmS in m1 from those

in m0. Adding S and SmS arrival shifts to their correspond-

ing arrival times for m0 (solid black squares in Fig. 2a), we

get the approximated arrival times of S and SmS in model

m1 (blue stars in Fig. 2a). Figure 2b shows the errors of the

combined ray and cross-correlation method in determining

the arrival times of S and SmS in model m1. It can be ob-

served that the errors of direct S arrivals are less than 0.005 s,

and 70 % errors of the SmS phases are smaller than 0.005 s

with maximum error around about 0.175 s occurring at the

4th and 48th stations. Considering that the travel-time differ-

ences of the SmS phase in the two models are about 1.7 s

at the two stations, these picking errors are relatively small.

This numerical example suggests that the combined ray and

cross-correlation method could serve as an efficient tool for

high-accuracy arrival-time picking on synthetic seismograms

in the iterative wave-equation-based tomographic inversions.

4 Model parameterization

Tomographic Eq. (13) needs invariably to be discretized for

actual inversions (Nolet et al., 2005). This gives rise to model

parameterization, which is an approximation to the true Earth

structure. Model parameterization determines the accuracy

of forward modeling and hence affects the final form of to-

mographic inversion results. Most commonly, functional ap-

proaches with a set of basis functions or an a prior functional

form, such as cells and grid nodes, have been adopted to rep-

resent the Earth’s structure (e.g., Dziewonski, 1984; Aki and

Lee, 1976; Thurber, 1983). Each approach has its own ad-

vantages and drawbacks (e.g., Zhao, 2009; Rawlinson et al.,

2010). To guarantee accurate computation of synthetic seis-

mograms and travel-time kernels and to adapt to local vari-

ations in data coverage, we use two sets of grid nodes (i.e.,

forward modeling grid and inversion grid) to parameterize

the Earth’s structure for forward modeling and inversion al-

gorithms in this study.

4.1 Forward modeling grid

As discussed in Sect. 2, we need to solve wave Eqs. (4)

and (9) to obtain synthetic seismogram u(t) and travel-

time kernel K(x). Many numerical methods such as the

staggered-grid finite-difference (FD) method (e.g., Virieux,

1984; Graves, 1996) and spectral-element method (Ko-

matitsch and Tromp, 1999) are well suited for this kind of

forward modeling. In this study, we choose a FD scheme

called high-order central difference method (see Appendix)

to conduct forward modeling. The prominent feature of this

high-order central difference method is that it simultaneously
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computes the displacement u(t,x) and the spatial gradient

field ∇u(t,x), making the computation of the travel-time

kernel K(x) very straightforward. It is also easier to im-

plement the high-order central difference method than the

staggered-grid finite-difference (FD) method and spectral-

element method. When sensitivity kernels are calculated by

solving the full wave equation, there are spurious amplitudes

in the immediate vicinity of the sources and receivers (Tape

et al., 2007; Tong et al., 2014a). An efficient way of removing

these spurious amplitudes is to smooth the travel-time kernel

K(x)=K(x,z) with a 2-D Gaussian function

G(x,z)=
4

πσxσz
e
−4

(
x2

σ2
x
+
z2

σ2
z

)
, (19)

where σx and σz are the averaging scale lengths along x

and z directions, respectively. Usually, σx and σz are cho-

sen to be less than the main wavelength of the seismic waves

(Tape et al., 2007). The smoothed travel-time kernel K̃(x,z)

is given by

K̃(x,z)=

∫∫
S

K(x− x′,z− z′)G(x′,z′)dx′dz′, (20)

i.e., the smoothed kernel value at a given point is obtained by

averaging the unsmoothed kernel values at its neighboring

points.

For the 2-D FD numerical simulation, the continuous area

S is sampled by a set of n discrete nodes xi (i = 1,2, · · ·,n).

By choosing a corresponding set of n basis functions Li(x)

(i = 1,2, · · ·,n), the smoothed travel-time kernel K̃(x) and

the relative velocity perturbation δc(x)/c(x) can be ex-

panded into linear combinations of the basis functions as

K̃(x;xr,xs)=

n∑
i=1

KiLi(x), (21)

whereKi and Ci are the corresponding coefficients related to

the basis function Li(x). Substituting Eq. (22) into Eq. (13)

results in the discrete form of the tomographic equation

δc(x)/c(x)=

n∑
i=1

CiLi(x), (22)

A general way to define a basis function Li(x) is to con-

struct a local interpolation function on knot node xi and its

neighbors. The possibility of different choices for the basis

functions Li(x) (i = 1, · · ·,n) has led to various inversion al-

gorithms (Nolet et al., 2005). As the high-order central differ-

ence method discussed in this study simulates seismic wave

propagation on a 2-D regular mesh, we assume the spatial

increments along x and z directions are 1x and 1z, respec-

tively. Let the knot node xi with a global index i be the grid

node (xm,zl) on the 2-D mesh. In this scenario, the simplest

basis function may be the piecewise constant function

Li(x)= Li(x,z)=


1, if (x,z) ∈

[
xm−1/2,xm+1/2

]
×
[
zl−1/2,zl+1/2

]
;

0, otherwise.

(23)

And the coefficient of the unknown Ci in Eq. () is

n∑
j=1

Kj

∫
�

Lj (x)Li(x)dx =1x1zKi . (24)

However, the interpolation function with the basis functions

(Eq. 23) is not even continuous. To make the interpolation

function continuous, we can use bilinear interpolation to fit

the perturbation field δc(x)/c(x) and the travel-time ker-

nelK(x). Bilinear interpolation performs linear interpolation

first in one direction and then in the other direction. The basis

function Li(x) for bilinear interpolation takes the following

form

Li (x)= Li (x,z)=



x−xm−1
xm−xm−1

z−zl−1
zl−zl−1

, if (x,z) ∈
[
xm−1,xm

]
×
[
zl−1,zl

]
;

x−xm−1
xm−xm−1

zl+1−z
zl+1−zl

, if (x,z) ∈
[
xm−1,xm

]
×
[
zl ,zl+1

]
;

xm+1−x
xm+1−xm

z−zl−1
zl−zl−1

, if (x,z) ∈
[
xm,xm+1

]
×
[
zl−1,zl

]
;

xm+1−x
xm+1−xm

zl+1−z
zl+1−zl

, if (x,z) ∈
[
xm,xm+1

]
×
[
zl ,zl+1

]
;

0, otherwise.

(25)

Correspondingly, the coefficient for the unknown Ci in

Eq. (22) becomes

n∑
j=1

Kj

∫
�

Lj (x)Li(x)dx =1x1z

 1
36

4
36

1
36

4
36

16
36

4
36

1
36

4
36

1
36

 (26)

◦

Km−1,l+1 Km,l+1 Km+1,l+1

Km−1,l Km,l Km+1,l

Km−1,l−1 Km,l−1 Km+1,l−1

 ,
where “◦” denotes a two-step operation which first gets the

entry-wise product of two matrices and then sums up all the

entries of the produced matrix. Kernel values for global and

local grids are linked by Ki+pM+q =Km+p,l+q (M is the

number of grid nodes along x direction, and p,q =−1,0,1).

To have a smoother fitting function, we could further use

bicubic interpolation, which is an extension of cubit inter-

polation on 2-D regular mesh. Actually, in the framework of

piecewise constant interpolation (Eq. 23), both bilinear inter-

polation and bicubic interpolation can be achieved by replac-

ing Ci’s coefficient 1x1zKi in Eq. (24) with a weighted

average value 1x1zK̃i around the knot node xi and its

neighbors such as shown in Eq. (26). Since we have previ-

ously smoothed the kernel by convolving it with a Gaussian

function, using piecewise constant interpolation or bilinear

interpolation to construct tomographic Eq. (22) is accurate

enough for practical applications.
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Figure 3. Linear interpolation of the material properties on one for-

ward modeling grid node (purple square) with material properties

on its eight surrounding inversion grid nodes (purple circles). For-

ward modeling grid is a regular 2-D mesh with fixed grid intervals

(formed by grey lines), and inversion grid is a 3-D regular mesh

with variable grid intervals. Black star and black inverse triangle

denote the locations of the earthquake and seismic station in the

2-D vertical plane, respectively.

4.2 Inversion grid

For the high-order central difference scheme, we assume that

seismic waves propagate in 2-D vertical planes, and hence

sensitivity kernels are restricted to the same 2-D planes. For

a single pair of source xs and receiver xr, the forward grid

nodes and equally the velocity model parameters Ci are dis-

tributed on a 2-D regular mesh in Eq. (22). An additional set

of grid nodes needs to be introduced to characterize the ac-

tual 3-D tomographic region. For simplicity, we use a regular

grid with variable grid intervals to represent the final tomo-

graphic results, which has the advantage of allowing a fine

grid for a target volume with dense data coverage (mostly

depending on spatial distribution of source and receivers) to

be embedded in coarse grid nodes.

To be consistent with the realistic application in the second

paper, we directly set up the inversion grid in a geographical

coordinate system (d,φ,λ), where d, φ, and λ are depth, lat-

itude, and longitude, respectively. If the Cartesian coordinate

system is adopted for the inversion grid, the following deriva-

tion procedure is almost the same. In a 3-D regular inversion

grid, each forward modeling grid node xi (i = 1,2, · · ·,n) is

located within a cube formed by eight inversion grid nodes

(Fig. 3). It is natural and straightforward to use trilinear in-

terpolation between the eight grid nodes (Zhao et al., 1992).

Note that the Cartesian coordinate xi should be transformed

into geographical coordinate x̃i prior to locating it in a cube.

If assuming that x̃i is located within the cube formed by

(dr+j1
,φp+j2

,λq+j3
) (j1,j2,j3 = 0,1; 1≤ r + j1 ≤ R; 1≤

p+ j2 ≤ P ; 1≤ q+ j3 ≤Q; R,P,Q are the numbers of in-

version grid nodes along depth, latitude, and longitude, re-

spectively), the unknown velocity model parameter Ci corre-

sponding to x̃i can be expressed as a linear combination of

the parameters Xr+j1,p+j2,q+j3
(j1,j2,j3 = 0,1) at the eight

inversion grid nodes:

Ci =

1∑
j1,j2,j3=0

(
1−

∣∣∣∣d − dr+j1

dr+1− dr

∣∣∣∣) (27)(
1−

∣∣∣∣ φ−φp+j2

φp+1−φp

∣∣∣∣)(1−

∣∣∣∣ψ −ψq+j3

ψq+1−ψq

∣∣∣∣)
Xr+j1,p+j2,q+j3

,

and it defines a continuously varying velocity perturbation

field δc(x)/c(x). Note that the velocity field c(x) itself can

be discontinuous. Substituting Eq. (27) into Eq. (22) gives

the tomographic equation on the inversion grid

T obs
− T syn

=

R∑
r=1

P∑
p=1

Q∑
q=1

ar,p,qXr,p,q , (28)

where ar,p,q is the coefficient for the unknown Xr,p,q and

pre-determined, the accuracy of which relies on not only the

accurate calculation of the travel-time kernel K(x) but also

on the choice of the inversion grid. For the convenience of

this discussion, we convert the 3-D array index (r,p,q) of the

inversion grid to 1-D index n= (r−1)PQ+(q−1)P+q (1≤

n≤N = RPQ). Tomographic Eq. (28) can be rewritten as

T obs
− T syn

=

N∑
n=1

anXn (29)

for a single pair of source xs and receiver xr, which relates

the travel-time residual T obs
− T syn linearly to the unknown

relative velocity perturbation Xn (1≤ n≤N ) on the inver-

sion grid.

5 Regularization and inversion method

With a significant increase in both quantity and quality of

seismic data from the proliferation of dense seismic arrays,

an increasing number of seismic data will be involved in

seismic tomography, which may result in higher-resolution

tomographic models. Certainly, more data will increase the

complexity of the seismic inverse problem.

When M seismic measurements are used to explore the

subsurface structure,M tomographic equations take the form

of Eq. (29) and form a linear system b = AX at each it-

eration, where b = [bm]M×1 and bm = T
obs
m − T

syn
m is the

iterative travel-time residual vector, A= [am,n]M×N is the

Fréchet or Jacobin matrix calculated in the current iterative

model and X = [Xn]N×1 is the unknown model vector. Since
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the problem b = AX is always ill-posed (either because of

non-uniqueness or non-existence of X), the general way to

solve it is to seek a solution that minimizes the following

regularized objective function

χ(X)=
1

2
(AX− b)TC−1

d (AX− b) (30)

+
ε2

2
XTC−1

m X+
η2

2
XTDTDX,

where Cd and Cm are the a prior data and model covariance

matrix which reflect the uncertainties in the data and the ini-

tial model (Rawlinson et al., 2010), D is a derivative smooth-

ing operator for model vector X, and ε and η are the damp-

ing parameter and smoothing parameter, respectively (e.g.,

Tarantola, 2005; Li et al., 2008; Rawlinson et al., 2010). The

last two terms on the right-hand side of Eq. (30) are regu-

larization terms, which are included to improve the condi-

tioning of the inverse problem b = AX and are designed to

give preference to solutions with desirable properties (Aster

et al., 2012): damping favors a result that is close to the ref-

erence model, while smoothing reduces the differences be-

tween adjacent nodes and thus produces smooth model vari-

ations (Li et al., 2006). Generally speaking, the objective

function (Eq. 30) tries to strike a balance between how well

the solution satisfies the data, the variations of the solution

from the reference model, and the smoothness of the solu-

tion model.

Calculating the gradient (Fréchet derivative) of the objec-

tive function χ(X) is often a key step in finding an optimal

solution to the minimization problem (Eq. 30) (Rawlinson

et al., 2010). Here, the Fréchet derivative of the objective

function χ(X) can be expressed as

∂χ(X)

∂X
=

(
ATC−1

d A+ ε2C−1
m + η

2DTD
)
X (31)

−ATC−1
d b.

Based on the Fréchet derivative ∂χ(X)/∂X, we describe two

different approaches to solve the optimization (minimiza-

tion) problem (Eq. 30).

5.1 LSQR solver

The minimizer X̃ of Eq. (30) satisfies ∂χ(X̃)/∂X = 0 and

formally can be expressed as

X̃ =
(
ATC−1

d A+ ε2C−1
m + η

2DTD
)−1

ATC−1
d b. (32)

Clearly, to explicitly obtain X̃ we need to invert an N ×N

matrix. There are various methods available to fulfil this

goal, such as LU decomposition, singular value decompo-

sition (SVD), and conjugate-gradient types of methods such

as LSQR algorithm. Among these methods, LSQR algorithm

may be one of the most efficient and widely used methods to

solve a linear system, especially when N is very large (Paige

and Saunders, 1982). Additionally, the minimization prob-

lem (Eq. 30) is equivalent to solving the following linear sys-

tem in a least square senseC
−1/2
d A

εC
−1/2
m

ηD

X =

C
−1/2
d b

0

0

 , (33)

and the application of LSQR or SVD to Eq. (33) will give

the same solution as that of Eq. (32) (Rawlinson et al., 2010).

Once we obtain a perturbation velocity field X̃, the velocity

model can be updated from the current velocity model on

inversion grid,C, toC+X̃. Because of the nonlinearity of the

inverse problem, further iteration may be needed to update

the velocity model until the objective function χ(X) drops

below a tolerance level.

5.2 Nonlinear conjugate gradient method

Once we have the Fréchet derivative of the objective func-

tion computed in Eq. (31), instead of inverting the matrix

in Eq. (32), we can alternatively use a nonlinear conjugate-

gradient method to iteratively improve the model (e.g.,

Fletcher and Reeves, 1964; Tromp et al., 2005). Previous

studies have shown the feasibility and efficiency of this non-

linear conjugate-gradient method in recovering seismic prop-

erties of the Earth’s interior (e.g., Tape et al., 2007, 2009; Zhu

et al., 2012). Here, we summarize the step-by-step process of

this nonlinear conjugate-gradient method, which starts from

k = 0 (Tape et al., 2007; Kim et al., 2011):

1. Calculate the objective function χ(Xk), compute the

gradient gk = ∂χ/∂Xk .

2. Compute the model update direction pk =−gk +

βkp
k−1. For the first iteration k = 0, set β0 = 0 and

p0
=−g0; otherwise calculate βk based on the equa-

tion

βk =max

(
0,

gk · (gk −gk−1)

gk−1 ·gk−1

)
. (34)

3. Determine the step length λk in the model update direc-

tion:

– Let f1 = χ(X
k), g1 = gk ·pk and compute a test

step length λt =−2f1/g1.

– Calculate the test perturbation model Xk
t =Xk

+

λtp
k .

– Compute the objective function χ(Xk
t ) and let f2 =

χ(Xk
t ). Note that we generally have f1 > f2 > 0.

– Compute

γ = [(f2− f1)− g1λt ]/λ
2
t , ξ = g1 (35)

and then λk is given by

λk =

{
−ξ/(2γ ), γ 6= 0;

error otherwise.,
(36)
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4. Update the perturbation model Xk+1
=Xk

+ λkp
k .

5. If ||gk||L2
= (gk ·gk)1/2 ≤ ε, the tolerance level, then

Xk+1 is the optimal perturbation model; otherwise reit-

erate from the first step (1) with k+ 1.

For the current model mk which has a perturbation Xk from

the starting model m0, we can rewrite the gradient of the ob-

jective function as

∂χ(Xk)

∂X
=−(Ak)TC−1

d bk +
(
ε2C−1

m + η
2DTD

)
Xk, (37)

where Ak and bk are respectively the Fréchet matrix and

travel-time residuals in the kth model. The first term on the

right-hand side of Eq. (37) is actually the sum of all travel-

time kernels (negatively) weighted by their corresponding

travel-time residuals. That is to say, if no damping and

smoothing operations are applied, the gradient (Eq. 37) is

simply the sum of all weighted individual travel-time kernels.

Since operators C−1
d , C−1

m , and D remain constant through-

out the whole process, to update the model from mk to mk+1

we only need to compute the Fréchet matrix and travel-time

residuals in model mk . This is different from the approach

using the LSQR algorithm as a linear system is solved at

each iteration. Generally speaking, the model update with the

LSQR algorithm may be larger than the nonlinear conjugate-

gradient method and the LSQR approach probably requires

fewer iterations.

Besides the LSQR solver and the nonlinear

conjugate-gradient method, the Limited-memory Broy-

den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm

(Nocedal , 1980) is another good candidate for solving the

optimization problem of Eq. 30 (Luo, 2012). The L-BFGS

algorithm is a quasi-Newton method that only involves

vector operations and storage and is therefore well suited

for optimization problems with a large number of variables.

More details on L-BFGS can be found in Nocedal (1980)

and Luo (2012).

6 Numerical examples

As discussed in Sect. 5, computing travel-time sensitivity

kernel or the Fréchet derivative of the objective function is

one of the key components of wave-equation-based travel-

time seismic tomography. In this section, we show examples

of Fréchet kernel for one earthquake. These examples pro-

vide insights into sensitivities of various seismic phases and

the future applications of wave-equation-based travel-time

seismic tomography involving tens of thousands of seismic

record.

A two-layer S wave velocity model with the Moho dis-

continuity at a depth of 30.0 km is used as a reference model.

The size of the model is 100 km× 50 km. S wave velocities

in the crust and the mantle are 3.2 and 4.5kms−1, respec-

tively. The “true” model is the same two-layer S wave veloc-

ity model but with a −5.0% low-velocity anomaly (red box

in Fig. 5) and a +5.0% high-velocity anomaly (blue box in

Fig. 5) included in the mid-crust. An earthquake is placed at

the horizontal distance x = 50.0km and the depth of 12.0km

with the dominant frequency of the Gaussian source time

function at 1.0 Hz. There are 51 stations equally spaced on

the surface with an interval of 2.0km. The high-order cen-

tral difference method is used as the forward solver. Seismo-

grams recorded at x = 14.0km and x = 86.0km on the sur-

face are shown in Fig. 4a and 4b, respectively. Three main

phases can be observed in these seismograms, including the

direct S wave, the Moho reflected phase SmS and the surface

reflected wave sSmS, which provide complementary infor-

mation on the crustal structures. For example, D. Zhao et al.

(2005) used S, SmS, and sSmS arrivals to conduct crustal

tomography in the 1992 Landers earthquake area with a ray-

based tomographic method. Here, we compute Fréchet ker-

nels for the three seismic phases. Because only sensitivity

kernels are computed and no inversion is conducted, the two

regularization terms at the right-hand side of Eq. (37) are not

taken into account in this section.

For seismograms recorded at x = 14.0km (Fig. 4a) the di-

rect S wave and the Moho reflected SmS phase for the true

model arrive closely following the corresponding phases in

the reference model. As shown in Fig. 5a and b, the geomet-

rical ray paths of both phases are partially within the low-

velocity zone, and therefore it is reasonable to have delayed

S and SmS arrivals in the true model. For the sSmS phase, its

geometrical ray path does not pass through the low-velocity

zone but its first Fresnel zone partially coincides with the

low-velocity anomaly (Fig. 4c). Due to the influence of the

low-velocity zone, the arrival time of sSmS is delayed by

0.0025 s obtained through the cross-correlation calculation.

The Fréchet kernels for S, SmS, and sSmS are shown in Fig.

5a–c, which closely follows their corresponding geometry

ray paths (indicated by dashed lines). The positive Fréchet

kernel values in the first Fresnel zones indicate that a reduc-

tion of velocity within these regions will result in the reduc-

tion of objective function χ . Figures 4b and 5d–f are for the

case when seismic waves travel through a high-velocity re-

gion in the true model and seismograms are recorded at the

station x = 86.0km. Negative Fréchet kernel values in the

first Fresnel zones suggest that an increase of velocity in this

region of the reference model can reduce the objective func-

tion χ .

The Fréchet kernels displayed in Fig. 5a–f are associated

with a particular seismic phase at one seismic station, i.e.,

the individual kernels. Of course one seismic record does not

well constrain the subsurface heterogeneous structure. With

the 51 stations on the surface, we can compute the Fréchet

kernel for one seismic phase defined at all seismic stations,

shown in Fig. 5g–i. These kernels are actually the sum of

individual S, SmS, and sSmS kernels computed at each sta-

tion. Due to the increased data coverage and the constructive

effect, both the low and high-velocity areas are sampled by
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Figure 4. Seismograms recorded by the stations located at (a) x =

14 km and (b) x = 86km on the surface. Seismograms computed in

the reference model are shown as black curves, and those computed

in the true model are illustrated by red curves. The computational

domain is a crust-over-mantle model with a size of 100km×50km.

The crust has a thickness of 30 km containing one low and one

high-velocity zone in the true model respect to the reference model

(Fig. 5). The earthquake is located at x = 50km at the depth of

12 km.

the bulk part of the kernels. The values of these three kernels

are positive within the low-velocity zone and negative within

the high-velocity area, which indicates that updating the ve-

locity model in the opposite direction −∂χ(X)/∂X would

reduce the objective function χ . We can further define the ob-

jective function χ as the sum of S, SmS, and sSmS phases

at all seismic stations. The corresponding Fréchet kernel is

shown in Fig. 6, which is the sum of the kernels in Fig. 5g–i.

It can be observed that kernel values at the anomalous re-

gions are not prominent in Fig. 5g–i, but are dominant in

Fig. 6. This suggests that we may simultaneously use differ-

ent seismic phase data to highlight anomalous structures in

future studies. For demonstration purpose, we only worked

with one event in this part. To increase the illumination, more

seismic events should be included. Once the Fréchet kernels

for all events and phases are computed, the LSQR solver or

the nonlinear conjugate-gradient method can be used to iter-

atively improve the velocity model.

7 Discussion and conclusions

Wave-equation-based travel-time seismic tomography

(WETST) involves 2-D forward modeling and 3-D tomo-

graphic inversion. Considering adjoint tomography based

on 3-D spectral-element method or other 3-D forward

modeling techniques as an approach for “3-D–3-D” seismic

tomography (e.g., Tromp et al., 2005; Tape et al., 2009; Zhu

et al., 2012), WETST can be viewed as a “2-D–3-D” adjoint

tomography method. From the computation point of view,

2-D forward modeling with a high-order central difference

scheme is computationally efficient and can be conducted

on most single PCs. This makes it possible to handle large

seismic data sets with WETST. Actually, increasing data

amount and data coverage is the best way to improve the

resolution of tomographic results, and sometimes may com-

pensate for the approximations in the tomography technique

itself. For example, it is well known that one main drawback

of ray theory is that it does not consider the influence of

off-ray structures (Dahlen et al., 2000); however, a good

data set with a dense and even distribution of ray paths can

greatly improve the resolution of ray tomography (Tong

et al., 2011). A similar problem for the 2-D approximation

in WETST is its ignorance of the off-plane influence on

seismic arrivals. To what extent this approximation is valid

and how it affects the final inversion results should be

further investigated. However, by taking advantage of the

computational efficiency of 2-D forward modeling, we may

be able to reduce the effect of the 2-D approximation by

increased data coverage in real applications.

WETST only uses travel-time information for two main

reasons. First, travel time is quasi-linear with respect to varia-

tions in the velocity structures, which greatly assists the con-

vergence of gradient-based inversion methods as presented

in Sect. 5. Second, compared with fitting waveforms, it is

much easier to only predict the arrival times of particular

phases on synthetic seismograms computed through 2-D for-

ward modeling. The envelop energy method or the combined

ray and cross-correlation method presented in this study can

be easily implemented to pick the arrival times on synthetic

seismograms. Additionally, the finite-frequency travel-time

residuals T obs
− T syn in previous finite-frequency tomogra-

phy studies (e.g., Hung et al., 2001, 2004, 2011) were de-

termined with the cross-correlation travel-time measurement

(Dahlen et al., 2000). However, in this study, the residuals

are obtained after manually picking the onset times T obs

on observed seismograms (bandpass filtered) and calculat-

ing T syn on synthetic seismograms with the energy envelop

method or the combined ray and cross-correlation method.

Considering that the derivations of the travel-time sensitiv-

ity kernel in Eq. (11) and previous finite-frequency sensi-

tivity kernels (e.g., Dahlen et al., 2000; Zhao et al., 2000;

Tromp et al., 2005; Fichtner et al., 2006) are mainly based

on the Born approximation, which requires that the reference

velocity model c(x) for synthetic seismogram s(t) is very
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Figure 5. Fréchet kernels corresponding to direct S (a, d, g), SmS (b, e, h), and sSmS (c, f, i) phases. Panels (a)–(c) are computed only using

seismograms recorded at the station x = 14km. These seismograms are influenced by the low-velocity zone in the red box in the true model.

Panels (d)–(f) are only related to seismograms recorded at the station x = 86km, which are influenced by the high-velocity zone in the blue
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Figure 6. Summation of the Fréchet kernels corresponding to the

kernels for S, SmS, and sSmS phases in Fig. 5g–i.

close to the real model c(x)+ δc(x) for real data d(t), i.e.,

|δc(x)| � c(x). Since |δc(x)| � c(x), it is straightforward to

get that |s(t)−d(t)| � |s(t)| if both s(t) and d(t) satisfy the

same wave equation. Providing that |s(t)−d(t)| � |s(t)|, we

can say that the data and synthetic broad pulses d(t) and s(t)

have very similar waveforms, then the time differences of

onset, peak, and end times of the two pulses should be al-

most the same. The time difference of onsets on synthetic and

data pulses should be identical or very close to the one cal-

culated with the cross-correlation travel-time measurement,

since cross-correlation travel-time difference is also a kind

of travel-time difference. But in this study, we take a detour

to get the onset time of synthetic seismogram s(t). It is com-

putationally expensive to simulate the propagation of seismic

waves in 3-D models. To reduce the computation cost, we al-

ternatively use 2-D simulation to get synthetic seismograms

u(t), which may only match the 3-D synthetic seismogram

s(t) against the onset time. Since we only need to know the

exact onset time of the synthetic pulse, this 2-D approxima-

tion is accurate enough. Therefore, the approach of calcu-

lating the travel-time residuals T obs
− T syn proposed in this

study can provide high-accuracy data for the wave-equation-

based travel-time seismic tomography study.

If 3-D finite-frequency effects need to be taken into ac-

count and full waveform fitting is required, we suggest the

use of 3-D–3-D tomographic techniques such as adjoint to-

mography based on the spectral-element method (Tromp

et al., 2005; Fichtner et al., 2006). In this case, WETST may
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be used to construct the starting models for 3-D–3-D seismic

tomography. The hybrid approach could help reduce the to-

tal computational costs and speed up the convergence rate of

the inverse algorithm as a “closer” initial model is used. How

much efficiency can be gained depends on the problem itself,

and a comparison of computation time costs between the 2-

D–3-D and 3-D–3-D methods is presented in the companion

paper (Tong et al., 2014b). Considering that ray-based seis-

mic tomography methods are still the most prevalent tomo-

graphic methods and WETST has the advantage of more ac-

curately computed sensitivity kernels, WETST may be a po-

tentially useful compromise for 3-D tomographic inversions

before the wider application of 3-D–3-D seismic tomography

in the near future.

Forward modeling in WETST discussed in this paper is

based on solving a 2-D acoustic wave equation in the Carte-

sian coordinates. If the source and the receiver are far apart

and the curvature of the Earth cannot be neglected, the acous-

tic wave equation in Cartesian coordinates needs to be trans-

formed into geographical coordinates, which may be neces-

sary for the use of teleseismic data. Currently, WETST can-

not use converted seismic phases such as P –S or simulta-

neously determine the P wave and S wave velocity struc-

tures in tomographic inversions. But these two goals can be

achieved by replacing the 2-D acoustic wave equation with

the 2-D elastic wave equation. Additionally, a regular grid

with variable grid intervals is suggested to represent the fi-

nal tomographic results in this paper. To automatically adapt

the inversion grid to the data distribution, adaptive mesh us-

ing Delaunay triangles and Voronoi polyhedra can be alterna-

tively adopted (e.g., Sambridge and Rawlinson, 2005; Zhang

and Thurber, 2005; Rawlinson et al., 2010). Source inversion

and discontinuity (such as the depth of Moho) determination

may also be considered in the future (e.g., Liu and Tromp,

2008; Tong et al., 2014a).

In addition, WETST can include not only direct first ar-

rivals (P wave and S wave) but also later reflected (e.g.,

PmP , SmS, pPmP , sSmS) and refracted (Pn, Sn) phases

as the ray-based tomographic methods do (e.g., D. Zhao

et al., 1992, 2005; Xia et al., 2007). Different seismic phases

have different traveling paths and are influenced by struc-

tural anomalies differently. The combined use of various

seismic phases can increase the illumination of the subsur-

face structures (Figs. 5 and 6). Given that WETST conducts

forward modeling in 2-D vertical planes with an efficient

high-order central difference scheme, it is possible to include

a large set of seismic data in tomographic inversion. Two dif-

ferent inversion algorithms, LSQR solver and the nonlinear

conjugate-gradient method, can be used to find the optimal

tomographic results efficiently. Since individual kernels are

computed, it is also straightforward and efficient to exam-

ine resolution in both data and model spaces (Luo, 2012). In

a companion paper, we will use WETST to explore the het-

erogeneous structures beneath the 1992 Landers earthquake

(Mw 7.3) area.
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Appendix A: High-order central difference method

Yang et al. (2012) developed a finite-difference scheme,

nearly analytic central difference (NACD) method to solve

the 2-D acoustic wave equation. The NACD method has

fourth-order accuracies in both space and time, and it uses

only three grid nodes in each spatial direction. This method

shows good performance in suppressing numerical disper-

sions. The essence of the NACD method is to use dis-

placement and its spatial gradient to approximate second-

and-higher order spatial derivatives of the displacement. To

achieve this goal, the displacement gradient field is obtained

by numerically solving some derived acoustic wave equa-

tions (Yang et al., 2012). For simplicity, we use a simplified

version of the NACD method to simulate 2-D acoustic wave

propagation. In this approach, the value of the spatial gradi-

ent along one axis at a particular node is interpolated by the

displacement values at its neighboring grid nodes. We call

the resultant numerical scheme the high-order central differ-

ence method. The detailed schemes of the high-order central

difference method are summarized as follows:

un+1
i,j − 2uni,j + u

n−1
i,j

1t2
− c2

i,j (A1)(
uni+1,j − 2uni,j + u

n
i−1,j

1x2
+
uni,j+1− 2uni,j + u

n
i,j−1

1z2

)

+

(
c21x2
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)
∂4u

∂z4

∣∣∣n
i,j
−
c41t2

6

∂4u

∂x2∂z2

∣∣∣n
i,j

=
∂2u

∂t2

∣∣∣n
i,j
− c2

(
∂2u

∂x2
+
∂2u

∂z2

)∣∣∣n
i,j
+O(1t4+1x4

+1z4),

∂4u

∂x4

∣∣∣n
i,j
=

1

1x4

(
uni+1,j − 2uni,j + u

n
i−1,j

)
(A2)

+
6

1x3

(∂u
∂x

∣∣∣n
i+1,j
−
∂u

∂x

∣∣∣n
i−1,j

)
+O(1x2),

∂4u

∂z4

∣∣∣n
i,j
=

1

1z4

(
uni,j+1− 2uni,j + u

n
i,j−1

)
(A3)

+
6

1z3

(∂u
∂z

∣∣∣n
i,j+1
−
∂u

∂z

∣∣∣n
i,j−1

)
+O(1z2),

∂4u

∂x2∂z2

∣∣∣n
i,j
=

1

1x21z2
(A4)[

2
(
uni+1,j + u

n
i−1,j + u

n
i,j+1+ u

n
i,j−1− 2uni,j

)
− uni+1,j+1

− uni−1,j−1− u
n
i+1,j−1− u

n
i−1,j+1

]
+

1

21x1z2

(∂u
∂x

∣∣∣n
i+1,j+1

−
∂u

∂x

∣∣∣n
i−1,j−1

+
∂u

∂x

∣∣∣n
i+1,j−1

−
∂u

∂x

∣∣∣n
i−1,j+1

− 2
∂u

∂x

∣∣∣n
i+1,j

+ 2
∂u

∂x

∣∣∣n
i−1,j

)
+

1

21x21z

(∂u
∂z

∣∣∣n
i+1,j+1

−
∂u

∂z

∣∣∣n
i−1,j−1

+
∂u

∂z

∣∣∣n
i−1,j+1

−
∂u

∂z

∣∣∣n
i+1,j−1

− 2
∂u

∂z

∣∣∣n
i,j+1
+ 2

∂u

∂z

∣∣∣n
i,j−1

)
+O(1x2

+1z2),

∂u

∂x

∣∣∣n
i,j
=

1

121x

(
uni−2,j − 8uni−1,j + 8uni+1,j − u

n
i+2,j

)
(A5)

+O(1x4),

∂u

∂z

∣∣∣n
i,j
=

1

121z

(
uni,j−2− 8uni,j−1+ 8uni,j+1− u

n
i,j+2

)
(A6)

+O(1z4).

The high-order central difference method also has fourth-

order temporal accuracy and fourth-order spatial accuracy.

Additionally, the perfectly matched layer boundary condition

is used to absorb the outgoing waves (Komatitsch and Tromp,

2003). To implement this numerical method, the gradients

∂u/∂x and ∂u/∂z should be explicitly computed based on

Eqs. (A5) and (A6). Since the gradients of the displacement

are computed in forward modeling, the computation of the

travel-time sensitivity kernel (Eq. 11) becomes very straight-

forward, which shows that the high-order central difference

method can be naturally adapted for kernel computations.
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