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[11 We present a novel method for joint inversion of receiver functions and surface wave
dispersion data, using a transdimensional Bayesian formulation. This class of algorithm
treats the number of model parameters (e.g. number of layers) as an unknown in the
problem. The dimension of the model space is variable and a Markov chain Monte Carlo
(McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree
of knowledge one has about seismic structure (i.e constraints on the model, resolution, and

trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively
controls the information recoverable from the data and here it naturally determines the
complexity of the model (i.e. the number of model parameters). However, it is often
difficult to quantify the data noise appropriately, particularly in the case of seismic
waveform inversion where data errors are correlated. Here we address the issue of noise
estimation using an extended Hierarchical Bayesian formulation, which allows both the
variance and covariance of data noise to be treated as unknowns in the inversion. In this
way it is possible to let the data infer the appropriate level of data fit. In the context of joint
inversions, assessment of uncertainty for different data types becomes crucial in the
evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a
powerful tool in this situation, because it is able to evaluate the level of information
brought by different data types in the misfit, thus removing the arbitrary choice of
weighting factors. After illustrating the method with synthetic tests, a real data application
is shown where teleseismic receiver functions and ambient noise surface wave dispersion
measurements from the WOMBAT array (South-East Australia) are jointly inverted to
provide a probabilistic 1D model of shear-wave velocity beneath a given station.
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1. Introduction

[2] The coda of teleseismic P-waves contains a large
number of direct and reverberated phases generated at inter-
faces beneath the receiver that contain a significant amount of
information on seismic structure. However, these phases are
difficult to identify as they are buried in micro-seismic and
signal-generated noise [Lombardi, 2007]. The signal to noise
ratio is usually improved by stacking seismograms from
different records from a single station, but a major drawback
is the introduction of different source time functions gener-
ated by multiple earthquakes. This problem is overcome by a
method developed in the 1970s now widely used in seis-
mology and follows the pioneering work by Phinney [1964].
The idea is to deconvolve the vertical component from the
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horizontal components to produce a time series called a
“receiver function” (RF) [Langston, 1979]. In a receiver
function the influence of source and distant path effects are
eliminated, and hence one can enhance conversions from P to
S generated at boundaries beneath the recording site.

[3] The RF waveform can be inverted in the time domain for
a 1D S-wave velocity model of the crust and uppermost mantle
beneath the receiver. In this paper we present a novel RF
inversion methodology where the number of layers defining
the velocity model as well as the variance and correlation of
data noise are treated as unknowns in the problem. We also
show how independent data of different character and with
different sensitivities (e.g. surface wave dispersion measure-
ments) can be included in a consistent manner. The result is a
general probabilistic joint inversion methodology, where no
explicit “tuning” is needed to weight different data sets.

1.1. A Brief History of RF Inversion

[4] The RF inverse problem is highly non-linear and non-
unique [Ammon et al., 1990]. Owens et al. [1984] carried out
an iterative linearized inversion where partial derivatives
were computed numerically with a finite difference scheme.
The inversion was stabilized with truncation of small eigenvalues
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after singular value decomposition of the system of equations.
Kosarev et al. [1993] and Kind et al. [1995] used a linearized
Tikhonov inversion and stabilized the algorithm by penalizing
solutions far from a given reference model. It is well known
that linear inversion procedures based on partial derivatives
are easily trapped by local minima, and hence solutions may
be strongly dependent on initial models.

[5] As increased computational power became available,
Monte Carlo parameter search methods became a practical
alternative for RF inversion. These include global optimization
techniques such as genetic algorithms [Shibutani et al., 1996;
Levin and Park, 1997; Clitheroe et al., 2000; Chang et al.,
2004], niching genetic algorithm [Lawrence and Wiens, 2004],
simulated annealing [Vinnik et al., 2004, 2006], very fast
simulated annealing [Zhao et al., 1996], and also the neigh-
borhood algorithm [Sambridge, 1999a; Bannister et al.,
2003; Nicholson et al., 2005]. These techniques are able to
efficiently search a large multidimensional model space and
provide complex Earth models that minimize a misfit mea-
sure without need of linearization or computation of deriva-
tives. They were applied in the hope that the solution avoided
entrapment in local minima of the objective function.

[6] The inherent non-uniqueness of RF inversion means
that two Earth models that are far apart in the model space (i.e
which have different parameter values) can provide a similar
level of data fit. Non-linear optimization algorithms, to
varying degrees, are able to search a large parameter space
and find global minima, however they usually only provide a
single solution, i.e. the best one in some sense. This leaves
open the possibility that other Earth models, which are far
from this solution, might also fit the data within errors. Hence
a single solution is often not representative of the information
contained in the data. To reduce dependence on single “best
fit” models, global optimization techniques have been used to
perform an ensemble inference, where one obtains an
ensemble of models satisfying some predefined criteria (e.g.
the best 1000 data fitting models generated by the algorithm).
This ensemble of “acceptable” models are thus plotted
together for visualization [e.g., Piana Agostinetti et al., 2002;
Reading et al., 2003; Hetényi and Bus, 2007].

[71 However, the ensemble obtained in this way is rather
arbitrary and there is no guarantee that these models are
representative of all acceptable models. Furthermore, the
statistical distribution of models within the ensemble gener-
ally does not represent the acceptable range in the objective
function and therefore cannot be directly used to infer trade-
off, constraints or resolution on model parameters. These
issues arise because most non-linear optimization algorithms
do not perform importance sampling (i.e where the frequency
distribution of sampled models is proportional to the objec-
tive function, or posterior distribution in a Bayesian frame-
work), and hence the ensemble solution strongly depends on
user choices, or on the class of algorithm employed.

[8] A typical example has been the use of the neighbor-
hood algorithm [Sambridge, 1999a] for RF inversion [e.g.,
Piana Agostinetti et al., 2002; Reading et al., 2003; Bannister
et al., 2003; Frederiksen et al., 2003; Hetényi and Bus,
2007]. In a second paper, Sambridge [1999b] invoked the
Bayesian philosophy and showed how to calculate standard
Bayesian outputs using an arbitrary distributed ensemble, i.e.
one generated by any ensemble technique. However, most
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studies which employ the neighborhood algorithm do so only
in an optimization context.

[9] In a Bayesian framework the objective is to create an
ensemble of models that represent the posterior probability
distribution quantifying the degree of belief we have about
the Earth’s structure and composition. This probability dis-
tribution combines “a priori” knowledge with information
contained in the observed data. Models most consistent with
both data and prior information correspond to the maxima of
this distribution. The tails are described by poorly fitting
models in the ensemble, and the “width” or the variance
quantifies the constraints we have on model parameters, i.e
the uncertainty on the inferred solution. The covariance of
the posterior distribution provides information on the cor-
relation or trade-off between model parameters.

[10] The “Bayesian neighborhood algorithm” [Sambridge,
1999b] was used for RF inversion by Lucente et al. [2005]
and Piana Agostinetti and Chiarabba [2008]. Subsequently,
Piana Agostinetti and Malinverno [2010] expanded the
Bayesian formulation to the case where the number of layers is
not fixed in advance but is treated as an unknown in the prob-
lem. At first sight this may sound like an unrealistic prospect, as
there would seem to be little to prevent an algorithm introduc-
ing ever more detail into a model to improve data fit. However
in a transdimensional Bayesian formulation, high dimensional,
many layers, models are naturally discouraged [Malinverno,
2002]. This results from a convenient property of Bayesian
inference referred to as “natural parsimony,” i.e. preference for
the least complex explanation for an observation. Overly com-
plex models suffer from over-fitting and so have poor predictive
power. Therefore, given a choice between a simple model with
fewer unknowns and a more complex model that provide sim-
ilar fits to data, the simpler one will be favored in Bayesian
sampling (see MacKay [2003] for a discussion). The preference
for models with fewer unknowns is an intrinsic feature of
transdimensional sampling algorithms.

[11] Transdimensional inversion, i.e. where the dimension of
the model space is an unknown, was first used in Earth Science
by Malinverno [2002] for DC resistivity sounding. Since then,
it has rapidly become popular, and has been introduced to a
wide range of areas such as geostatistics [Stephenson et al.,
2004], thermo-chronology [e.g., Stephenson et al. 2006], geo-
chronology [Jasra et al., 2006], palacoclimate inference [e.g.,
Hopcroft et al., 2007, 2009], inverse modeling of stratigraphy
[Charvin et al., 2009a, 2009b], seismic tomography [Bodin and
Sambridge, 2009], wire-line log data interpretation [Reading
et al., 2010], change point modeling of geochemical records
[Gallagher et al., 2011], geoacoustic inversion [Dettmer et al.,
2010], potential fields studies [Luo, 2010], and inversion of
electromagnetic data [Minsley, 2011].

[12] Piana Agostinetti and Malinverno [2010] appears to be
the first application of a transdimensional algorithm to the
receiver function problem. In this paper, we extend their
scheme to the hierarchical case where data noise levels are also
treated as unknowns. Our scheme also solves a longstanding
problem in geophysical inversion, i.e. how to determine the
relative weights applied to different data types (e.g. receiver
functions and dispersion measurements) during an inversion.

1.2. Receiver Function Variance

[13] As shown by Gouveia and Scales [1998], the level of
data uncertainty estimated prior to inversion (i.e. the covariance
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matrix of data noise) plays a critical role in Bayesian inference.
In an optimization framework the solution does not depend on
the level of data noise (since the best fitting model remains the
same as we rescale all error bars of the data). In contrast, with a
Bayesian framework, the data uncertainty directly determines
the form of the posterior probability distribution and hence the
posterior samples generated from it.

[14] In the context of a transdimensional inversion, the
variance of data noise becomes even more important. Piana
Agostinetti and Malinverno [2010] showed a clear relation-
ship between the data errors and number of interfaces in the
sampled models. A transdimensional Bayesian procedure
automatically adapts the complexity of the solution in order
to fit the data up to the level of noise determined by the user.
Of course, as more model parameters (e.g. more layers) are
introduced, the data could be fitted better, but the procedure
naturally prevents the data to be fitted more than the given
level of noise [for a recent example, see Dettmer et al., 2010].

[15] For receiver functions the noise is correlated from
sample to sample by the band-limited nature of the wave-
forms. The uncertainty can be characterized into three types.
Firstly, observational errors on the seismic waveform result
from background seismic noise (micro-seisms) and from the
instrumental noise affecting the recording. Often, outlier RFs
in the stack are eliminated from visual inspection and hence
there is no clear quantification of the degree of observational
noise. Secondly, processing errors occur in the deconvolu-
tion between components of the seismogram, which is an
unstable operation. The frequency domain deconvolution is
stabilized with a water-level scheme, whose parameter is
chosen by trial-and-error [Clayton and Wiggins, 1976].

[16] In addition, there are assumptions made about the
Earth (e.g. horizontal homogeneous isotropic layers) that
prevent us from reproducing the observed RFs. We refer to
the part of the data that cannot be modeled by our physical
approximation of the Earth as “theory errors.” This type of
noise is coherent and fully reproducible, and following the
definition of Scales and Snieder [1998], it is a part of the
signal we choose not to explain. For example, the complex
structures near the receiver produce a scattered wavefield
that is not taken in account in our forward model and which
is thus considered as data noise in the inversion. A Gaussian
filter is applied to limit the final frequency band, in order to
reduce the sensitivity to fine structure.

[17] As shown by Di Bona et al. [1998], all these con-
tributions to the RF variance may not be simply additive and
an overall quantification of the noise in terms of magnitude
and correlation is often difficult.

1.3. The Covariance Matrix of Data Errors

[18] In most Bayesian studies, the data noise is assumed to
be normally distributed, and represented by a covariance
matrix of data errors C,. Ammon [1992] estimated the noise
level from the power-spectral density in a pre-signal time
window (the segment which precedes the direct P-wave
arrival). Sambridge [1999b] estimated a noise covariance
from multiple realizations of correlated noise waveforms.
Piana Agostinetti and Malinverno [2010] derived the noise
correlation from the averaging function which is calculated
by deconvolving the vertical component of motion from
itself, using the chosen water-level parameter. If the water-
level fraction is zero, the result is a perfect Gaussian (from
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the low-pass filter included in the procedure). Di Bona et al.
[1998] evaluated the noise involved in the frequency domain
deconvolution by using the residuals of a time domain
deconvolution of the averaging functions from the computed
RFs, in the portion preceding the P-pulse.

[19] These different schemes approximate different effects,
and it is clear here that there is no consensus to date on the
way of measuring noise in RFs. Although these techniques
can be used to infer the level of observational and processing
noise, they do not estimate uncertainties due to theoretical
errors. Note however that Gouveia and Scales [1998] accoun-
ted for model discretization errors in the case of Bayesian
seismic waveform inversion. In the case of geoacoustic inver-
sion, Dettmer et al. [2007, 2008] propose to estimate the
covariance of data errors from analysis of data residuals
obtained from a maximum likelihood solution.

[20] In this work we address the issue of noise estimation
with a Hierarchical approach [Malinverno and Briggs, 2004;
Malinverno and Parker, 2006]. The Hierarchical Bayes model
is so named because it has two levels of inference. At the
higher level are “hyper-parameters” such as the noise var-
iances of the data. At the lower level are the physical para-
meters that represent Earth properties, e.g. seismic velocities.
Information on physical parameters at the lower level is con-
ditional on the values of hyper-parameters selected at the outer
level. Overall, a joint posterior probability distribution is
defined both for hyper-parameters and Earth parameters.

[21] Here we use a Hierarchical Bayes formulation where
both the variances and correlation parameters of data noise
are treated as unknowns in the inversion. In this way we
fully take account of the complex combination of effects
contributing to the misfit. In the context of a variable number
of layers, we shall show that this can be a major advantage
over having fixed noise estimates.

1.4. Joint Inversion With Surface Wave
Dispersion Measurements

[22] Although RFs are particularly suited to constrain the
depth of discontinuities, they are only sensitive to relative
changes in S-wave velocities in different layers, and poorly
constrain absolute values. Conversely, surface waves dis-
persion (SWD) measurements are sensitive to absolute S-
wave velocities but cannot constrain sharp gradients, and are
poor at locating interfaces [Julia et al., 2000]. The difficulty
of quantitatively utilizing data sets with different sensitivi-
ties have resulted in most models of shear-wave velocity
being based only on either RFs or SWD.

[23] However, with increasing computational power, meth-
ods to jointly invert RF and SWD are gaining in popularity
[e.g., Ozalaybey et al., 1997; Du and Foulger, 1999; Julid
et al., 2000, 2003; Chang et al., 2004; Lawrence and Wiens,
2004; Yoo et al., 2007; Tkalci¢ et al., 2006; Moorkamp
et al., 2010; Tokam et al., 2010; Salah et al, 2011]. The
motivation for this approach is to improve resolution, and
reduce the non-uniqueness of the problem and influence of
noise. Furthermore, if different types of data are inverted
together, the complementary constraints are likely to better
resolve structure.

[24] In this work we propose to invert RFs jointly with
observations based on the cross-correlation of ambient noise
recorded at nearby receivers [Campillo and Paul, 2003;
Shapiro and Campillo, 2004; Stehly et al., 2009], which
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Figure 1. The model is parameterized with a variable num-
ber of Voronoi nuclei (red squares) which define the seismic
structure (blue line). The vertical location of nuclei define
the geometry of layers which Vs value is given by horizontal
positioning of nuclei. Note that Voronoi nuclei are not nec-
essary at the center of layers but rather boundaries are
defined as equidistant to adjacent nuclei.

provides apparent travel times of surface waves at periods
~1-30 s (mostly sensitive to the crust). In the context of
joint inversions, assessment of data uncertainty becomes
crucial in the construction and evaluation of a misfit func-
tion. This is because data sets of different nature have dif-
ferent levels of noise, and their relative uncertainty
determines their relative contribution to the misfit. Often,
some arbitrary weighting factor is chosen which begs the
question of whether maximum benefit is being obtained
from the joint inversion. In this paper we show that a Hier-
archical Bayes procedure appears to be effective in this sit-
uation, as it is able to quantify the level of information
brought by different data types in a self consistent manner.

2. Methodology

2.1. Model Parameterization

[25] In this study the radial RF and SWD are assumed to
be dominated by the response of homogeneous horizontal
layers beneath the receiver. The geometry of layers is
described by a variable number, &, of Voronoi nuclei as
shown in Figure 1.The layer boundaries are defined as
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equidistant between adjacent nuclei, with the lowest layer a
half space. Each layer i (with ie[1k]) is therefore determined
by the depth of its nucleus ¢; and by a shear wave velocity
value v;. By allowing the number of layers, £, to be variable
as well as both the position of the nuclei, ¢, and velocities, v,
we have a highly flexible parameterization of variable
thickness layers (see Figure 1). In our transdimensional
approach, this dynamic parametrization will adapt to the
spatial variability in the velocity structure information pro-
vided by the data.

[26] We also make inference on the covariance matrix of
data noise C,, which can be expressed with a number of
hyper-parameters h = (%1, hy, ...h,,), treated as unknowns in
the inversion. Therefore, the complete model to be inverted
for is defined as m = [¢, v, £, h].

[27] As described by Lombardi [2007], the timing of RFs
are relative to the first P arrival and thus very sensitive to the
variation of Vs relative to Vp. Note that RFs are also sensitive
to crustal attenuation. However here, we consider the Vp/Vs
ratio as well as attenuation coefficients fixed to a reference
model and we only invert for Vs in each layer. Furthermore,
we use only the simplest possible representation of velocity
within each layer, i.e. a constant, although higher order
polynomials are possible, e.g. a linear gradient or quadratic.

[28] In our inversion study, inappropriate modeling
assumptions (e.g. no dipping layers or anisotropy) may
manifest themselves in a poor data fit. In a conventional
Bayesian framework, these theory errors have to be taken
into account in the data noise covariance matrix which is
often impractical (see Gouveia and Scales [1998] for details).
For example, how would one quantify the magnitude and
correlation of data noise generated by approximating a dip-
ping layer as horizontal, or a complex anisotropic medium as
isotropic ? An advantage of the Hierarchical Bayes formu-
lation is that we let the data infer its own degree of uncer-
tainty, and hence theory errors, while still present, are
allowed for in the estimation of the data noise and acceptable
levels of data fit.

2.2. The Forward Calculation

[29] Our direct search algorithm requires solving the for-
ward problem a large number of times, that is to compute the
RF predicted by a given Earth model parameterized as
described above. We use the Thomson-Haskell matrix
method [Thomson, 1950; Haskell, 1953] to compute the
spectral response of a stack of isotropic layers to an incident
planar P-wave. Multiple reflections are considered with this
method. Since this way of solving the forward model is
achieved without slowness integration, it is fast and has been
widely used in Monte Carlo algorithms [e.g., Shibutani et al.,
1996; Sambridge, 1999a]. Once synthetic seismograms have
been computed for different components, receiver functions
are made via frequency domain deconvolution of the verti-
cal component from the radial component using water-level
spectral division [Langston, 1979] with a water-level of
0.0001. In the case of a joint inversion, the forward method
used to calculate surface wave dispersion is DISPER8&0
developed by Saito [1988], this algorithm does not consider
seismic attenuation. Since the proposed inversion algorithm
is a direct parameter search, the forward calculations are
separate routines independent of the main algorithm, and
hence they can be easily replaced by alternative algorithms.
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2.3. Bayesian Inference

[30] Ina Bayesian approach all information is represented in
probabilistic terms [Box and Tiao, 1973; Smith, 1991; Gelman
et al., 2004]. Geophysical applications of Bayesian inference
are described by Tarantola and Valette [1982], Duijndam
[1988a, 1988b], and Mosegaard and Tarantola [1995]. The
aim of Bayesian inference is to quantify the a posteriori
probability distribution (or posterior distribution) which is the
probability density of the model parameters, m, given the
observed data, d,,, written as p(m|d,,) [Smith, 1991]. In a
transdimensional formulation, the number of unknowns is not
fixed in advance, and so the posterior is defined across spaces
with different dimensions. This transdimensional probability
distribution is taken as the complete solution of the inverse
problem. In practice one tends to use computational methods
to generate samples from the posterior distribution, i.e. an
ensemble of vectors m whose density reflects that of the pos-
terior distribution.

[31] Bayes’ theorem [Bayes, 1763] is used to combine
prior information on the model with the observed data to give
the posterior probability density function:

posterior o likelihood x prior, (1)

P(m ‘ dobs) O(p(dobs ‘ m)p(m), (2)

where x|y means x given, or conditional on, y, i.e. the prob-
ability of having x when y is fixed. m is the vector of the
model parameters and d,, is a vector defined by the set of
observed data. The term p(d,;s/m) is the likelihood function,
which is the probability of observing the measured data
given a particular model. p(m) is the a priori probability
density of m, that is, what we (think we) know about the
model m before measuring the data d, .

[32] Hence, the posterior distribution represents how our
prior knowledge of the model parameters is updated by the
data. Clearly, if the prior and the posterior distributions are
the same, then the data add no new information.

[33] From an ensemble of models distributed according to
the posterior, it is straightforward to determine special prop-
erties like the best or average model, or to construct marginal
probability distributions for individual model parameters.
Correlation coefficients between pairs of parameters can also
be extracted [Gelman et al., 2004].

2.4. The Likelihood Function

[34] The likelihood function p(d,ss|m) quantifies how
well a given model with a particular set of parameter values
can reproduce the observed data.

[35] The observed receiver function can be written as

dobs(i) = dTrue(i) + E(i) i= [17 n}v (3)

where 7 is the size of the data vector, and €(i) represents
errors that are distributed according to a multivariate normal
distribution with zero mean and covariance C,, which may
be unknown. We recognize that the Gaussian assumption
may itself be questionable in some cases. Furthermore, by
assuming the normal distribution has zero mean, we do not
account for systematic errors.
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[36] In the case of correlated data noise, the fit to obser-
vations, $(m), is no longer defined as a simple “least-square”
measure but is the Mahalanobis distance [Mahalanobis,
1936] between observed, d,,, and estimated, g(m), data
vectors:

$(m) = (g(m) — dos,) ;" (g(m) — do). (4)

In contrast to the Euclidean distance, this measure takes in
account the correlation between data (equality being obtained
where C, is diagonal). The general expression for the likeli-
hood probability distribution is hence:

(27)1" c.l eXp{_¢2(m)}' ®)

Note that this expression requires both the inverse C, ' of the
data noise covariance matrix and also its determinant |C,|.

[37] When treating the data noise as a variable, one might
intuitively expect the algorithm to choose high values for the
variance of data noise (i.e. the diagonal elements of C,)
because this would reduce the misfit in (4). However, the
Gaussian likelihood function is normalized by |C,| in (5) and
here high data errors implies a low likelihood. Hence the
value taken by the magnitude of data noise has two com-
peting effects on the likelihood.

2.5. The Prior

[38] The Bayesian formulation enables one to account for
prior knowledge, provided that this information can be
expressed as a probability distribution p(m) [Gouveia and
Scales, 1998]. All inferences from the data are then relative
to this prior. In our 1D seismic inverse problem, this prior
information is what we think is reasonable for the shear-
wave velocity model we want to infer, according to previous
studies.

[39] In a stimulating short essay, Scales and Snieder
[1997] reviewed the philosophical arguments that have
been invoked for and against Bayesian inversion. The prin-
cipal criticism made to Bayesian inversion is that users often
“tune” the prior in order to get the solution they expect. In
other words, the a priori knowledge of the model is often
used as a control parameter to tune the properties of the final
model produced. Therefore, one can easily argue that in a
Bayesian framework, the solution is influenced by the form
of the prior distribution, whose choice is subjective.

[40] However in the examples shown here, the final
models will be dominated by the data rather than by prior
information and so we do not consider this to be a major
limitation. This is because we assume unobtrusive prior
knowledge by setting priors to uniform distribution with
relatively wide bounds, although we acknowledge that uni-
form distributions are very informative about their bounds,
and hence it is not possible to have a completely uninfor-
mative prior.

[41] The complete mathematical form of our prior distri-
bution is detailed in Appendix A.

P(dops | m) =

2.6. Transdimensional Inference

[42] Given the Bayesian formulation described above, our
goal is to generate a collection or ensemble, of Earth models
distributed according to the posterior function. In our problem,
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we do not know the number of layers, i.e. the dimension of the
model space is itself a variable, and hence the posterior
becomes a transdimensional function. This can be sampled
with a generalization of the well known Metropolis-Hasting
algorithm [Metropolis et al., 1953; Hastings, 1970] termed
the reversible-jump Markov chain Monte Carlo (1j-McMC)
sampler [Geyer and Moller, 1994; Green, 1995, 2003] which
allows inference on both model parameters and model
dimensionality.

[43] A general review of transdimensional Markov chains
is given by Sisson [2005] and Gallagher et al. [2009] pres-
ent an overview of the general methodology and its appli-
cation to Earth Science problems. The reversible jump
algorithm is described in previous studies [e.g., Malinverno,
2002; Gallagher et al., 2011]. Here we only give a brief
overview of the procedure, and present the mathematical
details of our particular implementation in Appendices.

[44] The rj-McMC method is iterative in which a sequence
of models are generated in a chain, where typically each is a
perturbation of the last. The starting point of the chain is
selected randomly and the perturbations are governed by a
proposal probability distribution which only depends on the
current state of the model. The procedure for a given itera-
tion can be described as follows: (1) Randomly perturb the
current model, to produce a proposed model, according
to some chosen proposal distribution (see Appendix B).
(2) Randomly accept or reject the proposed model (in terms
of replacing the current model), according to the acceptance
criterion ratio (see Appendix C).

[45] The first part of the chain (called the burn-in period)
is discarded, after which the random walk is assumed to be
stationary and starts to produce a type of “importance sam-
pling” of the model space. This means that models generated
by the chain are asymptotically distributed according to the
posterior probability distribution (for a detailed proof, see
Green [1995, 2003]). If the algorithm is run long enough,
these samples should then provide a good approximation
of the posterior distribution for the model parameters, i.e.
p(m|d0bs)~

[46] This “ensemble solution” contains many models with
variable parameterization, and inference can be carried out
with ensemble averages over the structure [see Piana
Agostinetti and Malinverno, 2010]. For example, the poste-
rior probability of the shear wave velocity at a given depth
can be visualized simply by plotting the histogram of the
values selected for the ensemble solution.

[47] In terms of choosing a single model for interpretation,
we can consider the average over the ensemble of sampled
models. This is known as the expected model, and is in fact a
weighted average, in which the weighting is through the
posterior distribution (sampled by the rj-McMC algorithm).
All the models sampled have a particular parameterization
defined by the number and position of their interfaces. When
a large number of models are averaged, the positions of well
defined interfaces will tend to overlap while less well defined
ones will tend to cancel out. This spatial average model is
effectively a continuous line which will capture the well
resolved parts of the model [Bodin and Sambridge, 2009].

[48] Here there is no need for statistical tests or regulariza-
tion procedures to choose the adequate model complexity or
smoothness corresponding to a given degree of data uncer-
tainty. Instead, the reversible jump technique automatically
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adjusts the underlying parametrization of the model to produce
solutions with appropriate level of complexity to fit the data to
statistically meaningful levels.

2.7. Data Uncertainty Quantification:
Hierarchical Bayes

[49] The covariance matrix of data noise C, in (4) imposed
at the outset has a direct effect on the solution of the revers-
ible jump algorithm and implicitly acts as a smoothing
parameter. This can be seen as an advantage over optimiza-
tion based schemes where the level of smoothing is chosen
a priori or interactively. However, in seismology, assessment
of measurement errors can be difficult to achieve a priori.
Without any reliable information about the data uncertainty,
it is impossible to give a preference between two solutions
obtained with different values of C..

[s0] Fortunately, an expanded Bayesian formulation can
take into account the lack of knowledge we have about data
errors. Following current statistical terminology, the data
noise covariance matrix is expressed with a number of
hyper-parameters (i.e. C, = flhy, h,, ...)), and the method
used is known as Hierarchical Bayes [Gelman et al., 2004].
The model to be inverted for is defined by the combined set
m = [¢, v, k, h], where ¢ and v are the vectors containing the
nuclei locations and velocity values, and h = (A, &, ...) is a
vector of hyper-parameters defining the unknown data
errors. The Hierarchical algorithm is implemented in the
same manner as the conventional reversible jump, the only
difference being that here we add an extra type of model
perturbation, i.e. a change in the hyper-parameter vector h.
As for other model parameters, each time h is perturbed, a
new value is randomly proposed from a given distribution,
and the new value of data noise is either accepted or rejected
according to the acceptance criterion ratio (see Appendix C).

2.8. Parameterizing the Covariance Matrix
of Data Noise

[51] As explained before, our philosophy is to consider the
level of data noise as an unknown in the inversion. Therefore
the main issue here is to “parameterize” the noise covariance
matrix C,, i.e. to express it as a function of a given number
of hyper-parameters. This is a symmetric » X n matrix
defined with (n* + n)/2 values which are obviously impos-
sible to estimate separately from only n data, and hence
some assumptions need to be made. The noise covariance
can be written in terms of a matrix of correlation R and a
vector of standard deviations s:

C, = s'Rs. (6)

With this decomposition, one can separate two properties of
the noise, i.e its magnitude and correlation [Piana Agostinetti
and Malinverno, 2010]. For simplicity, in this study the noise
is considered stationary, i.e. its magnitude and correlation are
constant along the time series (although we acknowledge that
this might not be always the case in RFs), then C, can be
written:

C, = o’R, (7)

where o? is the constant noise variance, i.e. the magnitude of
data noise. (In a case of a non-stationary time series, o can be
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parameterized as a linear function of time o(f) = i X t+ hy).
R is a symmetric diagonal-constant or Toeplitz matrix:

1 | ¢ Cn1
c1 1 c Cn_2
R=| o c 1 s |, (8)
Ch—1 Cp—2 Cp-3 1

where cii = [1,n]) describes the noise correlation between
points of the series. Thus c; defines the correlation between
two adjacent points, and more generally ¢; is the noise cor-
relation between points that are i samples apart in the series.
The key properties that we need are that the correlation
function decreases with distance, with limiting values of 1 at
i =0 and of 0 at i = co. This is the most common kind of
association found in times series. Then, the main question is
how to parameterize the correlation function ¢; and with how
many unknowns? Below we present two types of parame-
terization for the noise correlation.

[52] We first propose a parameterization which is conve-
nient to implement for our particular problem. The correla-
tion function is simply assumed to decay exponentially and
is thus given by

Ci = ri7 (9)

where r = ¢; is a constant number between 0 and 1. The
major advantage of such a parameterization is that the
inverse and determinant of C, needed in the likelihood in (5)
have simple analytical forms, i.e. they can be expressed in
terms of our two hyper-parameters h = [o,r] describing the
magnitude and correlation of data noise (see Appendix D).
[53] A second type of parameterization that is commonly
used to model the noise in RFs is a Gaussian correlation law:

¢ = (7). (10)

Compared to the first type of correlation, here there are no
high frequency components, and hence this form of noise
clearly seems closer to what is observed in receiver functions
before the first P-arrival (see Appendix D). This is because a
Gaussian filter is used in the deconvolution process to
remove high frequency noise that has high amplitude and
which blurs the signal. Although this type of noise parame-
terization appears to be more realistic in the case of RF, there
are no stable analytical formulations for the inverse and
determinant of C,. Therefore C,! and |C.| have to be
numerically computed, which is computationally expensive
and cannot be carried out each time C, is perturbed along the
random walk. Therefore, here one can only invert for the
magnitude of noise 4 = [o] whereas its correlation » needs to
be chosen by the user.

2.9. Adding Surface Wave Dispersion Data
Into the Problem

[54] Given the framework described above, it is straight-
forward to invert jointly independent data types with dif-
ferent units and levels of noise. This is done simply by
defining the data vector d and covariance matrix of data
errors C, in (5) as a concatenation of the data vectors and
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noise covariance matrices. In the case of a joint inversion of
RF and SWD, this yields

d = [d 7], (11)

_fe 0 } 12
Ce { 0 CgWD ’ ( )
where CX¥" is constructed with two parameters o™ and +*.
For surface wave dispersion data, we assume the measure-
ment error is constant with period and C3"? is also con-
structed with o°"Pand """ (note that instead of being
constant, o°"? could also be parameterized as a linear
function of period).

[55] In this way, C, can be parameterized with different
noise parameters for each data type. As can be seen in (4),
the level of noise in different data types controls their con-
tribution in the misfit function, and hence their influence in
the solution. Therefore, by inverting for data noise, we let
the data themselves infer the contribution of each data type
in the misfit, without having to define a scale factor to
weight independent data sets.

[s6] An alternative to this joint Bayesian inversion would
be a two-step inversion where the posterior distribution
obtained after inverting a first data set d; would determine
the prior for a second inversion based on the second data set
d,. In the case where the two data sets are independent, we
can write p(d;,d;/m) = p(d;|m)p(d,|m), and from (2) the
posterior solution after the two step inversion would be
identical to the posterior solution for the joint inversion.

3. Inversion of Synthetic Data

[57] We first test our algorithm with synthetic data com-
puted from a known velocity model made of 6 horizontal
layers. The true model (red line in Figure 3) presents two
major features often targeted by RF studies: a low S-wave
velocity layer in the crust (between 10—20 km) and a strong
velocity increase at the Moho (at about 30 km depth). A
synthetic receiver function (red line in Figure 2) is calculated
from the true model with the forward method described in
section 2.2, and a correlated random noise is added, which
results in the “observed” receiver function (blue line in
Figure 2). An alternate approach would be to add noise to
the seismic waveforms before the deconvolution. However,
here the receiver function waveform is the data vector to be
inverted. By directly adding the correlated noise to this
vector, we know the exact form of the data noise, and can
verify that the proposed algorithm is able to recover it. The
synthetic noise is generated according to a covariance matrix
C, defined with the first type of correlation (i.e. ¢; = r') with
values oy = 2.5 x 1072 and 74 = 0.85, and hence
inversions carried out in this section assume an exponential
correlation law. We recognize that this type of noise contains
high frequency signals that are normally filtered out in real
data. Therefore the results presented in this section should
only be seen as a “proof-of-concept,” and not as a statement
of the optimal noise parameterization.

[58] In order to illustrate the different features of the algo-
rithm, we first present results for a conventional transdi-
mensional RF inversion with fixed noise estimates. Then, we
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Figure 2. Simulated receiver function. Red: Synthetic data estimated from the true model in red in

Figure 3. Blue: RF with added Gaussian random
(ie. ¢; =7).

extend the formulation to Hierarchical models, i.e. treat the
data noise parameters (o and r) as variables in the inversion.
Finally, surface wave dispersion measurements with
unknown errors are added into the problem for a joint
inversion.

3.1. Transdimensional Inversion of RF With Fixed
Noise Parameters

[s9] The purpose of this section is to show that in a stan-
dard transdimensional inversion, i.e. where the estimated
data noise is fixed to some values given by the user prior to
the inversion, the form of the solution strongly depends on
the choice of the covariance matrix of data errors. Hence the
situation in this section is similar to that considered by Piana
Agostinetti and Malinverno [2010]. The RF shown in
Figure 2 has been inverted twice with a different matrix C, at
each run. The inversion is first carried out with the correct
noise estimates (Figures 3a—3c), and then using incorrect
values for o and r (Figures 3d-3f). In the second case, o has
been underestimated by 40% (we use 0.015 instead of 0.025),
and 7 has been overestimated by 8% (we use 0.92 instead of
0.85). Hence in this test we observe the effects of mis-
estimating the data noise.

[60] For the two cases, the transdimensional sampling has
been carried out allowing between 2 and 50 interfaces
(Mmin = 2 and ny,, = 50). Bounds for the uniform prior distri-
bution were set to 2—5 km/s for S-wave velocity values. Pos-
terior inference was made using an ensemble of 10° models.
The algorithm was implemented on 200 parallel cpus to allow
large numbers of independent chains, starting at different
random points, and sampling the model space simultaneously
and independently. Each chain was run for 2 x 10° steps in
total. The first half was discarded as burn-in steps, only after
which the sampling algorithm was judged to have converged.
To eliminate dependent samples in the ensemble solution,
every 200th model visited in the second half was selected for
the ensemble. The convergence of the algorithm is monitored
with a number of indicators such as acceptance rates, and
sampling efficiency is optimized by adjusting the variance of

noise generated with an exponential correlation law

the Gaussian proposal functions (see Appendix B). (For details
on convergence and independence of sampled models in
Markov chains, see MacKay [2003].)

[61] The solution is given by the transdimensional poste-
rior distribution which is represented by an ensemble of 1D
models with variable number of layers and thicknesses. In
order to visualize the final ensemble, the collected models
can be projected into a number of physical spaces that are
used for interpretation. For example, Figures 3a and 3d show
the marginal distribution for S-wave velocities as a function
of depth. At each depth, local information about the velocity
model is represented by a complete distribution which can
be seen as a marginal distribution of the posterior in this
“interpretation space.” These marginal posteriors are shown
as a color density map in Figure 3. In practice, the marginal
posterior is simply constructed from the density plot (i.e.
the histogram) of the ensemble of models in the solution.
This density plot is convenient to visualize the ensemble
solution, and it is particularly useful to demonstrate the
constraints on Vs.

[62] If one is interested in assessing the resolution (number
and position) of seismic discontinuities beneath the seismic
station, it is possible to examine the ensemble solution from
a different point of view and to plot the marginal posterior
distribution on the location of interfaces. Figures 3b and 3e
also show histograms of interface depths in the ensemble
of models. For each depth, this function represents the
probability density of having a discontinuity, given the data.
This provides useful information on the inferred locations
of transitions, which can be unclear in other plots. Note that
the positions of interfaces are not direct model parameters,
and hence this marginal distribution is again constructed
by projecting the ensemble of sampled earth models into a
visualization space.

[63] Since the models in the ensemble solution have vary-
ing number of cells, the complexity of the solution cannot be
described with a single number k. However we plot
Figures 3c and 3f the histogram of & across the ensemble
solution that is directly proportional to the marginal posterior
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Figure 3. Transdimensional inversion of the synth
meters o and r are kept fixed during the inversion to p
are set equal to the values used to construct the synthe

Number of layers

etic RF (in blue in Figure 2). Here the noise para-
redefined values. (a—c) Results when noise estimates
tic noise. (d—f) Results when o and r are respectively

under- and over-estimated relative to their “true” values. In this case the posterior approximation of the
true model in red is clearly worsened. Figures 3a and 3d show posterior probability distribution for Vs

at each depth. Red shows high probabilities and blue

low probabilities. The synthetic true velocity model

is plotted as a red line. Figures 3b and 3e show posterior probability for the position of discontinuities. Red
lines show depth of interfaces in the true model. Figures 3¢ and 3f show posterior probability on the num-
ber of cells. The red line shows the number of cells in the true model.

p(k|d,ps). The number of layers in the true model is shown by
the red line, and the uniform prior distribution on £, p(k) is
shown in light blue.

[64] Clearly, the solution obtained with correct noise esti-
mates gives better results (Figures 3a—3c) than when the
noise is misestimated (Figures 3d-3f). Since the magnitude
of noise has been underestimated, the algorithm automati-
cally adds more layers than necessary and “overfits” the
observed RF by fitting the unattributed noise. The expected
number of layers in the model in Figure 3f is 15, which is
twice the true value. Figure 3e shows that location of transi-
tions are not recovered as well. However, even though fea-
tures are generally degraded in comparison with Figure 3a,
the most resolvable elements in Figure 3d (i.e. location of
shallow discontinuities) are recovered. We verified in a sep-
arate experiment (not shown here) that if the data are
assumed as noisier than they really are (i.e. o in C, is over-
estimated), then this would tend to fit a model that has too
few cells (i.e. the model would be too simple).

[65] Therefore, the number of model parameters used, and
hence the complexity of the solution, clearly depends on the
estimated data noise imposed at the outset. The reversible
jump technique automatically adjusts the underlying
parametrization of the model to produce an average solution
with just enough complexity to fit the data. This is a
potential advantage over optimization based inversions.
However, as seen before, assessment of measurements errors
in RFs (and also in SWD) can be difficult a priori. Without

any reliable information about the data uncertainty, it is
impossible to give a preference between two solutions in
Figure 3 obtained with different values of C..

3.2. Hierarchical Bayes Inversion of RF

[66] In this section we consider the situation where little
is known about data noise. We repeat the experiment of
section 3.1 with exactly the same data vector (Figure 2) but
instead treat the noise parameters o and » as unknowns.
Interestingly, Figure 4 shows results for this test which are
virtually identical to those obtained when noise parameters
are fixed to their correct values (as in Figures 3a and 3b).

[67] In Figure 4a, we show a random sample of 60 models
in the ensemble solution. This is a very small subset of the
ensemble solution and cannot be used to infer statistical
properties, although it can be useful to visualize the solution.
Note that some of these profiles are far from the true model
in red and may not fit the data well, and reflect models from
low probability regions of the posterior distribution. We
show how particular 1D models for interpretation can be
constructed from the ensemble solution. Firstly, we plot (in
blue) the posterior mean model, simply constructed by tak-
ing the average Vs at each depth across the ensemble solu-
tion. We call this model the “average solution.” When
models with different transition locations are added, the
sharp changes present in individual models are smoothed
out, while those at similar locations are reinforced. In this
way, the average solution can exhibit at the same time sharp

9 of 24



B02301 BODIN ET AL.:

Probability

501

60
2

TRANSDIMENSIONAL INVERSION OF RF AND SWD

B02301

C

10 1

20 1

30

50 1

60 ! ! !
0

Vs(km/s)

P(transition)

Figure 4. Hierarchical Bayes inversion of the synthetic RF in blue in Figure 2. Here the noise parameters
o and r are treated as unknowns in the inversion. (a) Black lines show a random subset of 60 models in the
ensemble solution, which contains 10° models, and which is fully represented with (b) a color density plot.
The synthetic true velocity model in Figure 4a is plotted as a red line. The blue line shows the posterior
mean model (or average solution) constructed by taking the average Vs at each depth across the ensemble
solution. The green line shows the maximum of marginal posterior model (or maximum solution) which
follows the maximum of the distribution on Vs with depth. (c) Posterior probability for the position of dis-
continuities. Red lines show depth of interfaces in the true model and correspond well to the peaks in the

distribution.

discontinuities and low gradients (blue line in Figure 4b).
Instead of being predefined in advance by a single regular-
ization parameter, the level of smoothness in the average
solution is variable with depth and directly inferred by the
data.

[68] A second model that can be constructed is the mode of
marginal posterior which follows the maximum of the mar-
ginal with depth (shown in green in Figure 4a). We call this
model the “maximum solution.” Note that these two models
are merely properties of an ensemble of models that have
variable parameterizations, and hence do not correspond to
any particular individual member of the ensemble. Note also
that the maximum solution model is different from the best
fitting model in the ensemble, and from the model that
maximizes the posterior distribution overall. By inspection it
is clear that those models provide a good estimation of the
true model in red. Furthermore, all five transitions present in
the true model are well recovered in Figure 4c.

[69] Figure 5 shows posterior inference on the number of
layers and noise hyper-parameters, together with prior dis-
tributions. The number of layers in the true model, as well as
true values o, and r,.,. used to generate the synthetic noise
are showed in red. With scant information on data errors,
and on the complexity of the true model prior to the inver-
sion, the Hierarchical Bayes procedure has been able to infer
the magnitude and correlation of data noise, which quanti-
fied the required level of data fit, and thus the number of
model parameters needed in the inversion. Therefore this
example demonstrates that, by allowing the user to formulate

the full state of uncertainties she has about data noise, a
Hierarchical Bayesian procedure enables one to correct for a
lack of knowledge about data noise.

[70] The RF inverse problem is highly non linear, and
hence the posterior is far from being a unimodal Gaussian
distribution. To illustrate this, we have plotted in Figure 6
the marginal distribution on Vs at 31 km depth. This cross-
section corresponds to the dashed line in Figure 4b, and it is
close to the “Moho transition” in the true model. As a result,
the marginal distribution is influenced by velocity values in
the two layers on each side of the Moho, and it has two
maxima about these two values. In this case, one can see that
the average solution in blue is not representative of the true
model whereas the maximum solution in green is closer to
the true velocity in the lower interface. Although the average
solution model is smooth, the maximum solution model
(jumping from one value to the other) is better at showing
sharp transitions.

[71] Finally, we give an example of trade-off assessment
between two model parameters, that is Moho depth vs S-
wave velocity in the last layer of the crust. Again, here the
depth of an interface is not strictly a model parameter but a
useful feature that can be picked in any sampled model. The
crust-mantle transition is defined in the Voronoi models as
the closest discontinuity to 30 km. (We acknowledge that
this definition for the Moho is somewhat arbitrary, however,
here the main purpose is to illustrate trade-off assessment
between selected seismic properties.) Figure 7 shows the 2D
marginal posterior for the selected pair of parameters, which
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Figure 5. Hierarchical Bayes inversion. (top) Posterior distribution for the number of layers, (bottom
left) the standard deviation of data noise o, and (bottom right) correlation of data noise ». The uniform
prior is showed in light blue, and true values (used to construct the observed RF in blue in Figure 2)

are shown in red.

is obtained from the 2D histogram over the ensemble of
models. In this way one can extract accurate and quantifiable
information from the ensemble about the constraints and
correlation for these parameters. This trade-off means
unsurprisingly, that data are fit equally well when the Moho
is deeper and Vs is higher or vice-versa, and reassuringly
this limitation of the resolving power of the data is clearly
evident in the analysis.

[72] Another trade-off that can be quantified is the corre-
lation between the number of cells £ and the magnitude of
data noise o. Figure 8 shows the joint posterior distribution
on these two parameters. As expected, as the model com-
plexity increases, the data can be better fit, and the inferred

|:| Ensemble Solution

True Model

Average Solution

Maximun Solution

Number of models in the Ensemble

2 25 3 3.5 4 45 5
Vs (Km/s)

Figure 6. Marginal posterior for Vs at 31 km depth (i.e.
slightly after the Moho discontinuity). The distribution is
clearly influenced by both Vs value taken above and under
the discontinuity. Blue line shows the mean value (average
solution).Green line is the maximum of the marginal (maxi-
mum solution), and the red line is the true value (i.e. the Vs
value in the first layer of the mantle in the true model).

value of data errors decrease. However, the degree of trade-
off is limited and the data clearly constrains the joint distri-
bution of the two parameters reasonably well.

3.3. Joint Inversion of RF and SWD

[73] In this last section of synthetic experiments, we show
how surface wave dispersion measurements with unknown
errors can be added to the problem without having to pre-
define the weight given to different data types in the inver-
sion. The same synthetic model as sections 3.2 and 3.1 is
used to construct a synthetic RF and SWD (red lines in
Figure 9), with forward methods mentioned in section 2.2. A
synthetic noise randomly generated from (12) is added to
data to produce the two observed data sets shown in blue in
Figure 9. Since dispersion data are not time series but travel-
time measurements at different periods, we consider the

Probability

2 25 3 35 4 45 5
Vs in the last layer of the crust (km/s)

Figure 7. Posterior 2D marginal for the parameters repre-
senting depth of Moho and Vs in the last layer of the crust.
(The Moho is defined as the closest interface to 30 km in
the Voronoi models.) White dashed lines show true values
for both parameters.
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Figure 8. Joint posterior distribution for the number of
layers k£ and the magnitude of data noise o (note here that
k is a discrete variable whereas o is continuous). White
dashed lines show the true values used to construct the syn-
thetic RF. As expected, a clear negative correlation can be
seen between the two variables.

noise independent (i.e. not correlated), and use a diagonal
covariance matrix to generate SWD noise (i.e. oD = 0.1
and 0P = (). The two values used to generate random
noise for RF are o%f, = 4 x 1072, /¢ = 0.85 with an
exponential correlation law.

[74] In the inversion we assume for simplicity
diagonal in (12), and CX with the first type of parameteri-
zation (exponential correlation law), and hence invert for
three hyper-parameters o', , and ¢"P. In order to
show the constraints brought by each of the two data sets, we
first show results obtained after inverting RF data alone
(Figures 10a and 10b) and SWD data alone (Figures 10c
and 10d). The posterior distributions in Vs are wide in
Figure 10a and only the shallowest discontinuity is recov-
ered in 10b. This is because the RF is more noisy than in
sections 3.2 and 3.1, and hence the model is poorly recov-
ered. The RF alone contains little absolute velocity infor-
mation, and this gives rise to a non-uniqueness problem
known as the velocity-depth ambiguity (see Figure 7).
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Figure 9. Simulated data with and without added noise for
(top) SWD and (bottom) RF. In order to illustrate the bene-
fits of a joint inversion, here the magnitude of noise added to
the receiver function is larger than in sections 3.2 and 3.1.

[75] As expected, when SWD data are inverted alone,
average velocities are well recovered in Figure 10c but dis-
continuities are not constrained at all in Figure 10d. Joint
inversion results in Figures 10e and 10f show a dramatic
improvement. By adding dispersion curves to RF data, the
information on discontinuities has been clearly revealed.
This might seem counter-intuitive since SWD data are
poor at locating interfaces. However, as shown in Figure 7,
RF data exhibit a trade-off between velocities and depth
of interfaces. Therefore, given this correlation relation, by
constraining velocities, SWD data also indirectly constrain

Only SWD Joint (RF +SWD)
d e f

Depth(km)

p(discontinuity) p(discontinuity)

Figure 10. Separate and joint inversion results for the synthetic data in blue in Figure 9. (a and b) RF
inversion. Receiver functions are sensitive to strong gradients in elastic properties (e.g. velocity disconti-
nuities in the crust and upper mantle), but are not sensitive to absolute velocity structure. (¢ and d) SWD
inversion. Contrarily to RFs, surface waves dispersion measurements are sensitive to absolute S-wave
velocities but cannot constrain sharp gradients, and give poor results in locating interfaces. (e and f) Joint
inversion. The information on seismic discontinuities is clearly revealed.
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depth of discontinuities. Thus, the two data types are
complementary.

[76] For both separate and joint inversions, the algorithm
is able to recover the level of noise added to each data set,
and hence to fit each data type up the required level. Poste-
rior distributions on number of layers and noise parameters
are not shown, since such plots would be similar to those in
Figure 5. A number of experiments have been carried out by
changing the number of data points and levels of noise in
each data. In all cases, the algorithm allows inference on data
errors and both data types are adequately fitted.

4. Inversion of Field Measurements

[77] To demonstrate how the algorithm fares on real data,
we apply it to RF and ambient noise SWD data from the
WOMBAT experiment [Rawlinson and Kennett, 2008],
which is an extensive program of temporary seismic array
deployments throughout southeast Australia. Each array
consists of between 30 to 60 short period instruments that
continuously record for between five to ten months. Over the
last decade, a total of over 500 sites have been occupied
resulting in a very large passive seismic data set that has been
used for several studies [e.g., Graeber et al., 2002; Rawlinson
et al., 2006; Rawlinson and Urvoy, 2006; Clifford et al.,
2007; Rawlinson and Kennett, 2008; Arroucau et al., 2010;
H. Tkalci¢ et al., Multi-step modeling of receiver-based
seismic and ambient noise data from WOMBAT array:
Crustal structure beneath southeast Australia, submitted to
Geophysical Journal International, 2011]. Here we focus
on SEAL3, which is one of the twelve temporary deploy-
ments occupying the eastern and central sub-province of the
Lachlan Fold Belt located in New South Wales (Tkalci¢
et al., submitted manuscript, 2011). We show results of
our 1D transdimensional joint inversion beneath a particular
station.

4.1. Constructing Receiver Functions

[78] For each station of the SEAL3 array, TkalCi¢ et al.
(submitted manuscript, 2011) constructed a RF waveform
from a selection of events with m;, > 5.5, and with epicentral
distances between 30° and 90° from the station, which
ensured near-vertical incidence of P-waves. Furthermore,
only events with back-azimuths confined between 0° and
90° (i.e. Tonga-Fiji) were used in this study. By choosing a
narrow interval of ray-parameters and a narrow azimuthal
range, possible Moho dip and anisotropy are neglected,
which are only second-order effects in the context of deriv-
ing 1D models of the crust and upper mantle that are com-
patible with multiple geophysical data sets.

[79] For each event, all three components were cut for the
same time window and rotated to radial and tangential.
Then, radial RFs were calculated using the time domain
iterative deconvolution procedure proposed by Ligorria and
Ammon [1999]for a low pass Gaussian filter with parameter
a = 2.5, which determines the width of the filter and hence
the frequency content of the RF. In order to select RFs that
are mutually coherent and could be stacked to determine an
observed RF at each station, the cross-correlation matrix
approach described by Tkalci¢ et al. [2011] and Chen et al.
[2010] was used. More details and figures describing the
preprocessing of RFs are given by Tkalcic et al. [2011]. In
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this study, we propose to invert for shear-wave structure
beneath station S3A6 (—32.900S 148.909E), and hence the
average RF across all selected events recorded at this station
is used as the data vector in our algorithm (Figure 11).
During the inversion, synthetic RFs predicted by proposed
models are computed with a simple frequency domain
deconvolution technique as detailed in section 2.2. Hence
the observed and estimated data vectors in our inversion are
computed with different deconvolution methods. There is a
scale factor of two in amplitudes in the two different RF
computation, and the observed RF has been normalized for
comparison with estimated data.

4.2. Ambient Noise Surface Wave Dispersion

[so] SEAL3 deployment provided a large amount of high-
quality continuous records for the duration of more than
seven months. Arroucau et al. [2010] recently used the large
volume of recorded noise, which comes from diffuse sources
of seismicity such as oceanic or atmospheric disturbances, to
produce SWD measurements. The cross-correlation of the
ambient noise wavefield was computed on the vertical
component of all simultaneously recording station pairs. The
resulting time-averaged cross-correlograms exhibit a dis-
persed wavetrain, which can be interpreted as the Rayleigh
wave component of the Green’s function of the intervening
medium between the two stations [Shapiro and Campillo,
2004]. Rayleigh wave group traveltimes were then deter-
mined from the cross-correlograms (see Arroucau et al.
[2010] for details).

[s1] The goal of this study is to invert for a 1D shear-wave
velocity model from simultaneous modeling of RF and
SWD. However, RFs are associated with discrete points in
the geographical space, i.e. the location of single stations,
while SWD measurements are path averaged data related to
station pairs. In order to construct a dispersion curve asso-
ciated with the location of a station, Tkal¢i¢ et al. (submitted
manuscript, 2011) adopted the following strategy: Station
pairs located within a radius of 150 km around the station of
interest were selected and an average dispersion curve was
calculated from all the group velocity measurements per-
formed in that area. In order to insure reliable group velocity
estimates, a minimum distance between station pairs equal to
two wavelengths was required. Furthermore, the average
velocities were only calculated if more than twenty obser-
vations were available for a given period. (Note that another
way to produce point measurements for SWD is to carry out
2D tomographic inversions of travel-times at each period).
The average SWD curve thus obtained at station S3A6 is
shown in Figure 11, and is inverted simultaneously with the
observed RF at this station in order to infer a 1D shear-wave
model beneath the recording site.

4.3. Results

[82] Posterior inference was made using an ensemble of
about 5.2 x 10° models. The reversible jump algorithm was
implemented for 288 parallel cpu-cores sampling the model
space simultaneously and independently. Each chain was
run for 1.2 x 10° steps. The first 3 x 10° models were
discarded as burn-in steps, only after which the sampling
algorithm was judged to have converged. Then, every 500th
model visited was selected for the ensemble.
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Figure 11. Observed data for station S3A6. (left) Fundamental model Rayleigh wave group velocity dis-
persion measurements. The red curve shows the dispersion curve obtained with the model that best fits
these data in the ensemble solution. (right) Receiver function calculated with the method of Tkalcic
et al. [2011]. The red curve shows the RF calculated with the model that best fits the observed RF in

the ensemble solution.

[83] The data noise covariance matrix C, in (711/2) was
parameterized with 2 hyper-parameters o and ¢*"”, both
treated as unknowns in the inversion, while correlation
parameters <" and +*""? were kept fixed to predefined
values. As shown above, dispersion data were considered as
independent measurements, and hence *"? =0, although we
acknowledge that measurements close in frequency could
have correlated errors. Since P-phase waveforms were fil-
tered during the RF construction process with a Gaussian
filter (with a = 2.5), we used the Gaussian correlation func-
tion in (10) to model RF uncertainties. Hence, the correlation
parameter X/ was kept fixed to a value corresponding to a
white noise that has been filtered with a Gaussian filter with
parameter a. After some elementary calculus, this yields
R = f/a, where f; is the sampling frequency in the RF
(O. Gudmundsson, personal communication, 2010).

[s4] Note that using the exponential correlation law in (9)
to model RF uncertainties would erroneously assume high
frequency components in the noise which have obviously
been cut by the Gaussian filter (see Appendix D). Alterna-
tively, we could have constructed RFs using exponential
filters.

[85] As in our synthetic experiments, independent uniform
prior distributions were used for each model parameter with
bounds set to 2-50 for the number of layers, 2.5-4.5 km/s
for S-wave velocity values, 0-60 km for depth of Voronoi
ng(y:ylgi (see Figure 1), 0-0.12 1/s for o®, and 0-0.4 km/s for
o

[s6] The results obtained are shown in Figure 12. Almost
all the computed S-wave velocity models are characterized
by a very low velocity uppermost structure in the first kilo-
meter of the crust. These low values are interpreted to be
related to the presence at surface of either unconsolidated
sediments or weathered exposed rocks. The upper-crust (0—
15 km) shows complex structures and is characterized by the
presence of velocity inversions. Indeed, Figure 12 (right)
shows a large number of discontinuities in the first 15 km.

The histogram of the location of transitions in the ensemble
solution shows that the adaptive parameterization procedure
automatically chose models with a number of thin shallow
layers lying above thick deep layers. We suspect that this
large number of inferred shallow discontinuities might be an
indication of an inappropriate data noise parameterization.
That is, by assuming the magnitude of data noise is constant
along the time series, we give more weight to high amplitude
signals (2 s and 5 s peaks in Figure 11), which are sensitive
to shallow structures, and less weight to signals with a
smaller amplitude, sensitive to deeper structures.

[87] The S-wave velocity in the second part of the crust
(15-40 km) is relatively constant with a mean Vs =3.75 km/s,
although the inversion models also show some small velocity
steps at these depths. It is difficult to identify a relatively
sharp crust-mantle transition. The Moho is, rather, charac-
terized as a gradient transition zone over a depth range of 40—
45 km, which is consistent with the fact that S3A6 is located
in the mountainous region like the Lachlan Fold Belt. At
depths below 40 km, the posterior distribution on shear wave
velocity is clearly bimodal with two modes at Vs = 4 km/s
and Vs = 4.5 km/s. In this case, a typical feature is that the
maximum model “jumps” from one mode of the distribution
to another, resulting in a sharp discontinuity at 47 km. How-
ever, as can be seen in Figure 12 (right), this discontinuity is
not required by the data, but rather results from the mode being
an unstable measure of a bimodal distribution. Therefore,
when interpreting results, the user needs to bear in mind that
the information about Shear wave velocity is represented by a
full probability distribution, and that the maximum model and
average model are only properties of this distribution. The
inferred seismic models are aligned with the results of other
studies (Tkalci¢ et al., submitted manuscript, 2011). Although
our analysis of the geological implications is rather limited, the
aim here is to show that the ensemble solution produced by the
transdimensional approach is in good agreement with the main
geological features beneath the receiver.
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Figure 12. Joint inversion of field data for station S3A6. (left) The ensemble solution, which contains
5.2 x 10° models, is fully represented with a color density plot. This gives an estimation of the Posterior
probability distribution for Vs at each depth. (middle) Thick grey line shows the posterior mean model (or
average solution) constructed by taking the average Vs at each depth across the ensemble solution. The
thin black line shows the maximum of marginal posterior model (or maximum solution) which follows
the maximum of the distribution on Vs with depth. (right) Posterior probability for the position of discon-
tinuities constructed from the histogram of transition depths in the ensemble solution.

[s8] In order to emphasize the importance of having two equal to Figure 12 (left), but since SWD data are measured
independent geophysical data sets, we compare in Figure 13 for periods ranging from 1 to 28 s, they only constrain
results obtained after inverting the two data sets separately  shallow structure, and hence we only show results down to
and jointly. In this way the joint solution in Figure 13 is 25 km depth.

Only RF Only SWD Joint (RF+SWD) Average models

1 ‘ o =2 !

\

Probability

20 20 ERRREE ed
—RF |
— SWD|
0 — Joint |
25 25 d L .
25 3 35 4 25 3 3.5 4 25 3 35 4 25 3 35 4
Vs(km/s) Vs(km/s) Vs(km/s) Vs(km/s)

Figure 13. (a—c) Posterior probability distribution for Vs at each depth. Results are shown for individual
and joint inversion of data sets in Figure 11. (d) The average solution model for the three inversions car-
ried out.
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Figure 14. Comparison between residuals and estimated
noise for RF data in the portion following the P-pulse for
the Joint inversion. (top) Residual waveform (observed-pre-
dicted) for the best fitting model. (bottom) Example of a ran-
dom noise realization generated from the expected hyper-
parameter ¢*" and the fixed parameter /**. From visual
inspection, the two signals present the same variance and
smoothness, which indicates that the magnitude of data
noise has been estimated correctly, and that a reasonable
input 7 value has been chosen.

[s9] As is well known, RFs are poor at constraining
absolute velocities. The predictions made by RF alone sig-
nificantly underestimate the S-wave velocities, as revealed
by joint inversion (see the average solution models in
Figure 13d). Figure 13b shows the constraints given by
SWD alone. The interpretation in this case is limited to the
absolute velocity, without any indication where the dis-
continuities in elastic properties are. When adding SWD to
RF (Figure 13c), the velocity profiles tend to change in terms
of absolute velocity to accommodate the dispersion data, but
without significant alterations in their overall shape as a
function of depth, although we have seen in synthetic
experiments that even this is possible due to Vs/depth trade-
off (see Figure 10).

[90] Similarly to synthetic examples in Figure 10, here the
inferred uncertainties on the 1D velocity model, i.e. the width
of the marginal posterior at each depth, is reduced when
adding SWD into the problem, especially in the depth range
5-15 km. This quantitatively shows the advantage of simul-
taneously inverting different data sets. However, note that at
shallow depths (2—4 km), the joint inversion seems to
increase model uncertainties. This might be due to inconsis-
tency between data sets at these depths, which is accounted
for in the inversion as data noise, i.e. inability of a given
model to fit the data. Indeed, the volume of Earth sampled by
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RFs (sensitive to structure directly localized under the sta-
tion) and SWD data (sensitive to averages over large volumes
under and around the station) is quite different.

[o1] Since we are using a Gaussian correlation law to
model CX¥, the parameter % needs to be fixed at the outset
to a predefined value (see Appendix D). To validate this
choice, we compare the residual waveform (observed - pre-
dicted) for the model that best fits the RF in the ensemble
solution, to a realization of a random noise generated from
the inferred expected CX*". If the choice of /" is adequate,
and if o™ has been correctly inferred from the data, the noise
realization and residuals should have similar properties (i.c.
variance and smoothness). This is because the data residuals
can be considered a realization of the data errors, i.e. the data
noise is defined as the component of the measurements that
cannot be explained by g(m). From visual inspection, one
can see in Figure 14 that residuals and estimated noise for RF
data are similar. Although this is a qualitative test, note that
posterior error validation can also be carried out by applying
quantitative tests to residuals resulting from one or an
ensemble of models [see Dettmer et al., 2007, 2008, 2009,
2010].

5. Conclusion and Future Work

[92] Teleseismic receiver function analysis is now a well-
established seismological technique, and a large number of
schemes have been implemented in the last 30 years to infer
seismic structure beneath broadband stations. In the last
15 years, receiver functions have been inverted together with
surface wave dispersion curves and a number of joint inver-
sion algorithms have been proposed. However, a recurring
problem is the definition of the misfit function one tries to
minimize and particularly the role of the data noise in this
function. Here we have presented a novel joint inversion
method where a Bayesian formulation is employed to pro-
duce a posterior probability distribution, where each model
parameter can be described with a full probability density
function. While the variance of the posterior can be used to
assess uncertainty on model parameters, the posterior
covariance directly quantifies the trade-offs (i.e. the correla-
tion) between parameters. Hence the posterior can be exam-
ined from several point of views to infer different properties
of the model (e.g. depth of transitions, mean Vs value at one
depth, number of layers, etc).

[93] The parameterization of the Earth is adaptive and
information is extracted from an ensemble of models with
variable number of layers. But beyond the transdimensional
character of the inversion, an original feature is that little
needs to be assumed about the data noise covariance matrix.
This matrix plays a crucial role in a Bayesian problem, since
it directly determines the form of the posterior. The covari-
ance of data errors represents the magnitude and correlation
of data noise, which in the case of RFs and SWD can be
difficult to quantify. In the case of a joint inversion, this
matrix directly determines the level of information brought
by each data set into the solution. Our philosophy is to let the
data infer its own degree of uncertainty by treating the mag-
nitude and correlation of noise as unknowns in the problem.

[94] There is a relative freedom in the design of 1D solu-
tion profiles needed for interpretation, e.g. average solution
model, maximum solution model, best fitting model, etc.
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Furthermore, instead of using the whole ensemble of col-
lected models representing the posterior, one can first com-
pute the expected value of hyper-parameters (expected
number of cells or expected data noise) and construct a
solution profile by only accounting for models that take these
hyper-parameters values. This is known in the statistical lit-
erature as Empirical Bayes. Alternatively, instead of using
expected values of hyper-parameters, one can take as well the
mode of the marginal distribution on hyper-parameters.

[95] A potential criticism of our methodology is the com-
putational cost. If the Earth is defined by too many para-
meters, the number of models needed to sample the posterior
distribution becomes large. And since the predicted data have
to be computed each time a model is proposed, our algorithm
may become computationally prohibitive. Here it is neces-
sary to recognize that, even parallelized and optimized, our
method is between 1 and 3 order of magnitude slower than
standard linearized inversions. Also, we have here focused
on the mathematical problem and illustrated the algorithm in
simple situations where a number of approximations have
been made. We only inverted for S-wave velocity structure
while considering Vp/Vs ratio constant throughout the
velocity model. An obvious improvement of the algorithm
would be, at increased computational cost, to also consider
Vp/Vs ratio in each layer. In addition, layers have been
assumed homogeneous and horizontal and it would be pos-
sible to treat anisotropy, slope of discontinuities, and lateral
variations as unknowns in the problem. These improvements
could be achieved by using densely spaced arrays, by
including earthquake waveforms from a wide range of back-
azimuth, and using more sophisticated forward solvers.

[96] The approach presented in this paper is a general joint
inversion strategy, and it has a wide range of possible appli-
cations in geosciences (given that the model space is not too
large). The method provides a solution model that can exhibit
at the same time low gradients and sharp discontinuities. In
this sense it appears to have a considerable potential in Earth
sciences, given the dual continuous/discrete nature of the
Earth. Geophysical inverse problems that seem appropriate here
include resistivity surveying with vertical electric sounding or
electromagnetic surveys (EM) [Lowrie, 1997], inversion of
frequency-domain airborne electromagnetic (AEM) data [e.g.,
Brodie and Sambridge, 2006, 2009], potential fields studies
[Luo, 2010], or seismic cross-hole tomography [Nicollin et al.,
2008]. From a statistical inversion point of view, the main dif-
ference between different geophysical inverse applications
lies in the description of the forward problem. Since the
method is based on a direct parameter search algorithm, any
forward problem can be conveniently inverted. Hence the
ideas here are relevant to other geophysical inverse problems,
where depth/time profiles or indeed any 1-D functions are
sought.

Appendix A: The Prior

[97] Since we have independent parameters of different
physical dimension, in this work we only consider priors that
are separable and hence can be written as a product of
independent 1D priors on each variable. In some cases one
might want to introduce joint priors on a subset of the vari-
ables, for example by making the prior variance of velocity
in each layer dependent on the depth of the layer. In
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principle this could be done with additional calculations, but
the algorithm would then be more difficult to implement and
more computationally expensive. Here, the prior probability
distributions is separated into three terms:

p(m) = p(c,v | k)p(k)p(h),

where p(k) is the prior on the number of layers, and p(h) is
the prior on noise hyper-parameters.

[98] We choose for p(k) a uniform distribution over the
interval 1 = {keN | kpin < k < kmax}. Hence,

(A1)

o) = { /4

where Ak = (kpax — kmin). Given a number of cells %, the
prior probability distributions for the model parameters are
independent from each other, and so can be written in sep-
arable form:

if kel

otherwise, (A2)

ple,v|k) =ple|k)p(v|k).

Even though in the prior the parameterization variables ¢ are
independent of the velocity variables v, this will not be the
case once the data are introduced, and hence we expect
significant correlation in the posterior distribution as shown
in Figure 7.

[99] For velocity, the prior for the velocity v; in layer 7 is
specified by a constant value over a defined interval
J = {VeR|Vmin <V < Vnax}- Hence we have

(A3)

poul) = {3/

where Av=(Vyax — Vinin)- Since the velocity in each layer is
considered independent,

if vied

otherwise, (A4)

k
p(vIk) = Hp(vf | k). (AS)

As in the work of Bodin and Sambridge [2009], for mathe-
matical convenience, let us for the moment assume that the
Voronoi nuclei ¢; can only take place on an underlying grid
of finite points defined by N possible depths. For £ Voronoi

nuclei, there are ,C,L possible configurations on the N

N
possible depths of the underlying grid. We give equal

probability to each of these configurations. Hence,

Given a set of hyper-parameters h, the prior for each hyper-
parameter /; is specified by a uniform distribution over a
defined interval H; = {heR | hjin <h < hihax}. Hence we have

p(hy) = {é/(Ajh)

(A6)

if hjeH

A7
otherwise, (A7)
where ANh = (hfyax — hinin). Since we consider each hyper-
parameter independent in the prior,

P = T pl0). (A8)
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where m is the number of hyper-parameters defining the data
noise covariance matrix C,. Therefore, after substituting
(AS), (A6), and (A8) into (A1), the full prior probability
density function can be expressed as

KN — k)!

P = T [

(A9)

given that all parameters in m fall into the range defined by
their respective prior distribution. If at least one parameter
falls outside the defined boundaries, the full prior becomes
null.

Appendix B: Proposal Distributions

[100] Having randomly initialized the model parameters
by drawing values from the prior distribution of each
parameter, the algorithm proceeds iteratively. At each itera-
tion of the chain, we propose a new model by drawing from
a probability distribution g(m’|m) such that the new pro-
posed model m'’ is conditional only on the current model m.
At each iteration of the reversible jump algorithm, one type
of move is uniformly randomly selected from the five fol-
lowing possibilities:

[101] 1. Change the velocity in one layer. Randomly select
a layer i from a uniform distribution over [1, k] and ran-
domly propose a new value v} using a Gaussian probability
distribution centered at the current value v;:

1 (vi — vA)2
an (v i) = - 27rexp{ 3 }
1

The variance 67 of the Gaussian function is a parameter to be
chosen. Hence we have

(B1)

Vi = v +u, (B2)

where u is a random deviate from a normal distribution
N(0,0y). All the other model parameters are kept constant, and
hence this proposal does not involve a change in dimension.

[102] 2. Birth: create a new layer. Add a new Voronoi
center with the position ¢} found by choosing uniformly
randomly a point from the underlying grid that is not already
occupied. There are (N — k) discrete points available. Then,
a new velocity value v needs to be assigned to the new
layer. This is drawn from a Gaussian proposal probability

density with the same form as (B1):
, 1 ’
qv2 (Vesr | vi) = szexp{— }7 (B3)
where v; is the current velocity value at the depth ¢} where
the birth takes place. The variance 63 of the Gaussian func-
tion is a parameter to be chosen.

[103] 3. Death: Remove at random one layer by drawing
a number from a uniform distribution over the range [1, k].
The response values of the neighboring cells remain
unchanged.

[104] 4. Move: Randomly pick one layer (from a uniform
distribution) and randomly change the position of its nucleus

according to
1 exnd (c; — ci)2
Tovan P 28 [

(V}c+1 —v)
263

ge(ci|c) (B4)
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[105] 5. Change the estimated data noise. Randomly select
a hyper-parameter j from a uniform distribution over the
range [1, m]. Propose a new value /) using

: 1 K —hy)?

[106] Note that the proposed model can fall outside the
range defined by the uniform prior distribution. In this case,
the prior (and hence the posterior) of the proposed model is
null, and the model is rejected. In this way the proposal
distributions are seen as true Gaussians rather than truncated
versions.

[107] The standard deviations (6;, 6., 03, 6;) of the
Gaussian proposal functions are parameters to be fixed by
the user. As shown by MacKay [2003], the magnitude of
perturbations does not affect the solution but rather the
sampling efficiency of the algorithm. Thus the width of
proposal distributions are tuned by trial-and-error in order to
have an acceptance rate as close to 44% for each type of
perturbation [Rosenthal, 2000].

(B5)

Appendix C: The Acceptance Probability

[108] Once a proposed model has been drawn from the
distribution ¢(m’|m), the new model is then accepted with a
probability «(m’'|m), i.e. a uniform random deviate, r, is
generated between 0 and 1. If » < «, the move is accepted,
the current model m is replaced with m’ and the chain moves
to the next step. If » > a, the move is rejected and the current
model is retained for the next step of the chain where the
process is repeated. The acceptance probability, c/(m’|m),
is the key to ensuring that the samples will be generated
according to the target density p(m|d,,). It can be shown
[Green, 1995, 2003] that the chain of sampled models
will converge to the transdimensional posterior distribution,

p(mld,p), if

p(m’) p(dos | m’) g(m|m)

a(m [ m) = min| L p@one [m) gl | m)

SRARPN(S)

where the matrix J is the Jacobian of the transformation from
m to m’ and is needed to account for the scale changes
involved when the transformation involves a jump between
dimensions [Green, 2003].The expression for a(m'|m)
involves the ratio of the posterior distribution evaluated at
the proposed model, m' to the current model m multiplied
by the ratio of the proposal distribution for the reverse
step, g(m | m’), to the forward step, g(m’ | m).

C1. Proposal Ratios

[109] The proposal ratio of forward and reverse moves
needs to be calculated so that the acceptance probability in
(C1) can be calculated in each case. For the proposal types
that do not involve a change of dimension the distributions
are symmetrical. That is, the probability to go from m to m’
is equal to the probability to go from m’ to m. Hence

qe(ci | er) = gelci| ci)
aw (b | bj) = qw (b | ) (€2)
qv(vi | vi) = qu(vi | vi)
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and in all three cases the proposal ratio equals one.

g(m|m’)

g Tm) ~ " (@)

[110] For a birth step, the algorithm jumps between a
model m with k& layers to a model m’ with (k + 1) layers.
Since the new nucleus ¢+ is generated independently from
the new velocity value v} then proposal distribution can be
separated and we write

LV RAVEL. A (C4)

Specifically we have the probability of a birth at position
cj+1 which is given by
g(c'|m) = 1/(V ~ k), (cs)

the probability of generating the new velocity value vj is
given by
g(v |m) = g2 (vir1 | vi), (Ce)

the probability of deleting the cell at position ¢} (reverse

step)
g(c|m’) =1/(k+1), (c7)

and the probability of removing a velocity when cell is
deleted (reverse step)

g(vim') =1. (C8)
Substituting these expressions in (C4) we obtain
q(m | m')> (N — k)
, - : : 9
()~ FF Ty (@

[111] For the death of a randomly chosen nucleus, we
move from k to (k—1) cells. Suppose that nucleus c¢;, with
velocity v;, is removed. In this case, a similar reasoning to
the birth case above leads us to a proposal ratio (reverse to
forward) of

gmlm)\  kgo(ilv)
<ﬂm’mQMM‘XN—k+1r (€10)

where v/ is the velocity at depth ¢; in the new structure, ¢,
after removal of the ith layer.

C2. The Jacobian

[112] The Jacobian term “normalizes” the difference in
volume between two spaces of different dimension. In our
case, the Jacobian only needs to be calculated when there is
a jump between two models of different dimensions, i.e.
when a birth or death is proposed [Green, 1995]. If the
current and proposed model have the same dimension, the
Jacobian term is 1, and can be ignored.

[113] For a birth step, the bijective transformation used to
go from m to m’ can be written as

'

m = (¢, V, U, ) (€, V, i1, V1) =m. (C11)
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The random variable u. used to propose a new nucleus cj
is drawn from a discrete distribution defined on the integers
[0, 1, ..., N — k]. The random number u, is drawn from the
Gaussian distribution centered at 0 and the velocity assigned
to the new cell is given by

Virl = Vi + iy, (C12)

where v; is the current velocity value where the birth takes
place.

[114] Note that the model space is divided into a discrete
space (nuclei position) and a continuous space (velocities).
u. is a discrete variable used for the transformation between
discrete spaces and u, is a continuous variable used for the
transformation between continuous spaces. Denison et al.
[2002] showed that the Jacobian term is always unity for
discrete transformations. Therefore, the Jacobian term only
accounts for the change in variables from

(Vo) (V, V1) = V. (C13)
Hence, here the Jacobian term is the determinant of the
matrix of all first-order partial derivatives of the vector v’
with respect to (v,u,), and we have

_ ‘6(‘}7'5 v/(+1)

I bir = |
| 3] iren 5or. o)

_ |6(v, vit1)
‘ 6(v,uy)

10

7’1 1‘71. (C14)
[115] So it turns out that for this style of birth proposal the

Jacobian is also unity. Since the Jacobian for a death move is

T deatn = |9 piran» this is also equal to one. Conveniently,

the Jacobian is unity for each case and can be ignored.

C3. The Acceptance Term

[116] We now substitute expressions for each proposal
ratio into (C1) to get final expressions for the acceptance
probability in each of the 5 possible moves described earlier.
For the moves that do not include a change in dimension, we
have seen that the proposal ratio becomes unity. Hence the
acceptance term is simply given by the ratio of the posteriors

plm) ot ) ey

a(m’|m) = min l:LW.p(dabs | m)

Since the dimension of the model does not change, accord-
ing to (A9), the prior ratio is either null or unity. If one of the
proposed parameter falls outside the bounds defined by the
prior, the prior ratio is null and a(m’,m) = 0. Otherwise,

P(dops | m')} _

(e [m) (C16)

a(m’,m) = min {1,

For changes in velocity value and nuclei positions, we have

Mmmyﬂmhaﬁ_ﬂEEEEQ]

5 (C17)

When perturbing the data noise hyper-parameters h that
define the data noise covariance matrix C,, the normalizing
constant in the likelihood is changed and the ratio of deter-
minants needs to be taken into account (see Appendix D).

a(m’m) = min[l, ||g,‘;|| exp{—@(m');@(m)}} (C18)

19 of 24



B02301

Note that ®(m') and ®(m) also incorporate C’, and C,,
respectively.

[117] For a birth step, according to (A9), and provided the
perturbed parameter falls into the bounds of the prior, the
prior ratio takes the form

(i((l:ln))) o (Nk—Jrk)1 Ay’

(C19)

After substituting (5), (C9), and (C19) into (C1), the accep-
tance term for the birth step reduces to

0,27 {(v/:dr] - v,-)2
.exp
Ay

o (', m) :mm{L . ¢<m>2¢<m>H7
(C20)

where 7 indicates the layer in the current tessellation ¢ that
contains the depth ¢;.; where the birth takes place. Again, if
the perturbed parameters fall outside the bounds of the prior,
then a(m’,;m) = 0, and the move is rejected. For the birth
step then we see the acceptance probability is a balance
between the proposal probability (which encourages veloc-
ities to change) and the difference in data misfit which
penalizes velocities if they change so much that they degrade
fit to data.

[118] For the death step, the prior ratio in (C19) must be
inverted. After substituting this with (5) and (C10) into (C1),
and after simplification we get the acceptance probability

' . AV Vjv'fvi 2 b ' _ P
a(m,m>:mm[l792\/2_w,exp{( - (m”}}

(c21)

where i indicates the layer that we remove from the current
tessellation ¢ and j indicates the cell in the proposed tessel-
lation ¢’ that contains the deleted point ¢;. Unsurprisingly the
death acceptance probability has a similar form to that of the
birth, with proposal and data terms opposing each other.

[119] We see from these expressions that the variable N,
i.e. the number of candidate positions for the nuclei, van-
ishes. This means that there is no need to use an actual dis-
crete grid in generating nuclei positions. In fact it was only
ever a mathematical convenience which ensures that the
acceptance expressions have the correct analytic form. In
practice we are at liberty to generate the nuclei using a
continuous distribution over the region of the model (which
is tantamount to N — o0).

Appendix D: Parameterizing C,

D1. First Type of Noise Parameterization

[120] The correlation function in (8) is assumed to decay
exponentially and is thus given by ¢; = ¥, where r = ¢ is a
constant number between 0 and 1 which describes the cor-
relation between two adjacent samples in the time series.
This correlation function is plotted in Figure Dla for dif-
ferent values of 7, and realizations of noise with such a
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correlation are shown in Figures Dlc, Dle, and D1g. In this
case, the data noise covariance matrix in (7) writes:

1 r IO St
r 1 r T
C.=0c"| 2 r 1 3 (DI1)
rnfl rn72 rn73 1

where 7 is the number of data points.

[121] Hence, with this type of noise parameterization, the
two hyper-parameters h = [o, r] describing the noise covari-
ance can be given a wide uniform prior probability distribu-
tion and posterior inference can be done to infer the
magnitude and correlation of data noise. The two noise
parameters are perturbed along the transdimensional Markov
chain and each time a new value is proposed, C,' and |C,|
will be perturbed accordingly to compute the likelihood value
of the proposed model in (5).

[122] Tt can be easily shown with linear algebra that the
inverse of C, is a symmetric tridiagonal matrix:

1 —r 0 0 0
—r 1477 —r 0 0
cl_ 1 0 —r 1+ 0 0
¢ o2(1-1r?)
0 0 0 1+ —r
0 0 0 —r 1
(D2)

See Malinverno and Briggs [2004] for a detailed demonstra-
tion (note that when = 1 all the elements of C, are one and the
inverse does not exist). The inverse data noise covariance
matrix requires storage that is proportional to n, while com-
puting the Mahalanobis distance in (4) only requires order n
operations. The likelihood in (5) also needs the determinant of
C.. As shown by Malinverno and Briggs [2004], an expres-
sion of this determinant can be obtained by writing the tridia-
gonal inverse covariance matrix C, '= LL7, where L is a
lower triangular matrix whose determinant is the product of its
diagonal elements. The final result for the determinant of the
data noise covariance matrix is
IC.| =™ (1—-r)"". (D3)
[123] With this form of correlation, the data noise covari-
ance matrix is well-conditioned and there are stable analyt-
ical solutions for C, ! and |C.|. However, as shown below,
this is usually not the case if we use other forms of corre-
lation function. Here the main advantage is that each time we
want to perturb r or ¢ along the random walk, we directly
perturb the determinant and inverse without having to
numerically compute them from a perturbed C,, which
would be too computationally expensive.

D2. Second Type of Noise Parameterization

[124] The data noise covariance matrix can be also
parameterized with a Gaussian correlation law ¢; = 7P Here
r can be written as 7 = e~ "*”" where p” is the variance of a
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Figure D1. (a and b) The two types of correlation functions ¢; for different values of 7. These symmetric
functions represent the correlation between a point in the time series and its neighbors. In order to compare
the two forms of noise assumed in this study, we plot different realizations of noise for different values of
and a fixed standard deviation o = 1. (c, e, and g) Different realizations with the first type of correlation (expo-
nential decay), whereas (d, f, and h) noise vectors are generated with a Gaussian correlation. The second
type of noise in Figures D1b, D1d, D1f, and D1h seem to be closer to what is observed on RF before

the first arrival, however this way of parameterizing the noise turns out to be more difficult to implement
for an Hierarchical Bayes inversion.

B02301

Gaussian correlation function, which is shown in Figure D1b.  will have exactly the same structure as our second type of

Realizations of such a noise for different values of » are noise.

shown in Figures D1d, D1f, and D1h. Note that a white [125] Although this form of correlation clearly appears
noise which has been convolved with a Gaussian filter —more relevant for our problem, it turns out that the associated
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data noise covariance matrix in (7) is highly ill-conditioned,
and hence there are no stable analytical formulation for its
inverse and determinant. Therefore C, ' and |C,| have to be
numerically computed with SVD decomposition and
removal of a large number of small eigenvalues that desta-
bilize the process. Unfortunately an SVD decomposition of a
n X n matrix is computationally expensive and cannot be
carried out each time C, is perturbed along the random walk.
As a result, the correlation 7 need to be fixed and cannot be
treated as an unknown in the inversion. However, the mag-
nitude of data noise o2 can be perturbed without having to
re-invert each time C,. This is because we have

_ -1 |
C.'=(c"R) = —R ! (D4)
|Ce| = |0°R| = |6%I4| x [R| = ¢¥"|R |. (D5)

In this way R™' is computed once at the beginning and
remains fixed along the Markov chain. The variance of data
noise o~ can be treated as an unknown since each time a new
value is proposed, C, ' and |C,| can be computed from (D4)
and (D5) without having to redo any SVD decomposition.
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