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Abstract Passive seismic methods for imaging the discontinuity structure of Earth have primarily
focused on differences in vertically and radially polarized energy in the coda of earthquake‐generated
body waves (e.g., receiver functions). To convert the timing of scattered wave arrivals to depth, three
parameters must be known or inferred: depth or layer thickness (H), P‐wave velocity (VP), and S‐wave
velocity (VS). A common way to solve for these parameters is through H‐κ stacking analysis, in which layer
thickness and the ratio between VP and VS (κ) is calculated while holding one of the velocity parameters
constant. However, this assumption biases estimates of layer properties and leads to uncertainties that are
not appropriately quantified. As these results are commonly used as starting models for more complex
seismic or geodynamic analyses, these assumptions can propagate much further than the initial study. In
this study, we introduce independent observations from body‐wave autocorrelations that can help constrain
this underdetermined problem. P‐wave autocorrelation allows for the recovery of theMoho‐reflected P‐wave
phase from teleseismic earthquakes, which is removed during deconvolution in the calculation of receiver
functions. As the Moho‐reflected P‐wave is independent of VS, this constraint allows us to create a system of
equations that better quantifies the thickness, VP, and VS of a layer and produces a more appropriate
estimation of associated uncertainties. We apply this to 88 seismic stations that are spatially distributed
throughout the United States to obtain a model of crustal variability that is unbiased by a priori assumptions
of velocity structure.

1. Introduction

The vast increase in publicly available seismic data has led to innovative analyses that exploit coherent, low
signal‐to‐noise ratio arrivals through the cross correlation of seismic waves. Generally, this involves compar-
ing and stacking records from contemporaneously operating stations to obtain the Green's function between
the stations. These interferometry methods are commonly used for measuring surface wave velocities (e.g.,
Lin et al., 2008; Shapiro et al., 2005) and show promise for elucidating discontinuity structure using body
waves (Draganov et al., 2009; Lin et al., 2013; Poli, Campillo, et al., 2012; Poli, Pedersen, et al., 2012).
More recently, attempts to estimate Earth's discontinuity structure through the cross correlation of seismic
signals at individual stations, or autocorrelation, have had varied degrees of success (Gorbatov et al., 2013,
Heath et al., 2018; Kennett, 2015; Kennett et al., 2015; Oren & Nowack, 2017; Sun & Kennett, 2017;
Tibuleac & von Seggern, 2012). Though it has been theoretically proven that the autocorrelation of an
upgoing wave at a station is equivalent to the reflectivity response of the underlying media (Claerbout,
1968; Frasier, 1970; Gorbatov et al., 2013), most studies prefer to estimate discontinuity structure by decon-
volving different seismic components during the coda of direct arrivals from earthquakes to highlight body‐
wave conversions (e.g., receiver functions; Langston, 1979).

Recent improvements in data processing, however, have renewed interest in using seismic autocorrelation to
estimate the discontinuity structure beneath a station (Oren & Nowack, 2017; Phạm & Tkalčić, 2017),
resulting in convincing results especially when a coherent seismic source (such as an earthquake) is
analyzed (Kim et al., 2019; Phạm & Tkalčić, 2017). By autocorrelating the direct P‐wave with its coda, not
only are phases associated with P‐to‐S‐wave conversions observed, as in receiver functions, but the
backscattered/reflected P‐wave is also recovered, a phase that cancels during deconvolution in the receiver
function calculation (Figure 1). An inherent mathematical characteristic of the autocorrelation procedure is
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that it turns arbitrarily shaped primary signals into simple pulse‐like arrivals that correspond to the Green's
function of the structure it samples. When applied to earthquake‐generated signals, this turns the source‐
time function into a simple pulse that highlights velocity discontinuities, as reflected/transmitted wavelets
across an impedance contrast are simply scaled versions of the input wavelet. The final product is a signal
with a similar character to that of receiver functions. In this study, we first show the feasibility of
obtaining the discontinuity structure of the Earth using autocorrelations of the vertical and radial
component seismograms from both synthetic and real teleseismic events. We then combine these results
with receiver functions through a modified H‐κ stacking analysis approach (Zhu & Kanamori, 2000)
to obtain information about the layered structure of the Earth beneath a station. By introducing
autocorrelations, we obtain an arrival that independently constrains the average P‐wave velocity structure
of a layer, a parameter commonly assumed in H‐κ stacking analysis. This approach also allows for a more
appropriate estimation of correlated uncertainties between crustal properties (e.g., VP, VS, and layer
thickness), which can be significantly underestimated when holding one of these variables constant.
Accurately quantifying these uncertainties is important for more detailed studies that commonly use
crustal thickness, VP, and VS estimates derived from receiver function studies as a starting model.

2. Methods
2.1. Demonstration With Synthetic Data

We generate synthetic seismograms using the raysum forward modeling code for a plane wave impinging on
a layered medium to demonstrate the ability of the autocorrelation technique to recover the reflectivity
structure beneath a station (Frederiksen & Bostock, 2000). We used a simple ~1‐Hz Gaussian source‐time
function to compute synthetic seismograms for a layer with a 30‐km‐thick crust, VP = 6.2 km/s, and VP/
VS ratio of 1.75. The resulting S‐wave conversion from the Moho (Ps), Moho‐reflected P‐wave (Pmp), and
later multiple phases (2P1S and 1P2S) are clearly observed in the modeled data (Figures 1a and 1b; naming
convention follows Niu & James, 2002). The receiver functions for these waveforms were calculated using
the time‐domain iterative deconvolution method (Ligorría & Ammon, 1999) with a Gaussian alpha para-
meter of 2.8 (~1‐Hz center frequency; Figure 1c). The opposite polarities of the P‐to‐S converted phases on

Figure 1. (Far left) Schematic representation of a plane wave impinging on a layer to produce the synthetic vertical (A) and radial (B) component seismograms and
receiver functions (C). The layer consists of a thickness of 30 km with a VP = 6.2 km/s and VP/VS ratio of 1.75. A range of different ray parameters are modeled to
illustrate moveout for the different phases at teleseismic distances (30–95 epicentral degrees). Lines connecting peaks are colored by expected polarity for that
phase (blue = negative and red = positive). Receiver functions highlight phases with opposite polarities best, while the Pmp phase is not apparent.
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the vertical and radial components result in large signals in the receiver functions after deconvolution;
however, the similarity of the backscattered P‐wave reflected off of the Moho on both components cancels
during deconvolution.

To compute autocorrelation functions, we largely follow the processing steps outlined by Phạm and Tkalčić
(2017; Figure 2). Synthetic vertical and radial component data were resampled to 20 samples per second, and
the spectra were whitened by dividing the original spectra by the smoothed spectra. The smoothed spectra
was computed by taking a moving average in the frequency domain over a width of 0.34 Hz. The width of
the frequency band for the spectral whitening operator can have a significant effect on the computed auto-
correlations and is largely qualitative. We discuss the effects of different whitener widths in supporting infor-
mation Text S2 and Figures S3 and S4. After spectral whitening, we apply a low‐pass filter at 5 Hz and
compute the autocorrelation of the vertical and radial components. We only need to consider one side of
the autocorrelation, as it is symmetric around zero time lag. A cosine taper was applied to the first 2 s of
the positive time lags of the autocorrelation to suppress the inherent high amplitude wavelet around zero
time lag, and the waveform was then band‐pass filtered between 0.25‐ to 1‐Hz. This resulted in an autocor-
relation function that has similar frequency content as the computed receiver functions.

The autocorrelation recovers all expected phases observed on the transmitted wavelet, as well as some spur-
ious arrivals not present in the transmitted response (Figure 2d, right). Similar spurious wavelets have been
observed in other studies and can be thought of as part of the correlation wavefield (e.g., Phạm et al., 2018).
These phases arise due to the correlation of the Pmp phase with other converted phases, namely, the Ps and

Figure 2. Autocorrelation processing using synthetic data. Seismograms correspond to the vertical (left) and radial (right) components of the synthetic data for a ray
parameter of 0.06 s/km. (a) Synthetic seismogram (black) and resulting seismogram after spectral whitening (blue). (b) To whiten the spectrum, the spectrum of the
synthetic data was divided by the smoothed spectrum (black divided by red line). Resulting spectrum shown in blue. (c) Comparison between autocorrelations from
the synthetic data with (blue) and without (black) processing and locations of expected phases for a ray parameter of 0.06 s/km. A cosine taper is applied to the first 2
s of the autocorrelation to suppress the large amplitude at zero time lag (shaded). Amplitudes of waveforms are normalized. (d) Autocorrelations showing the
recovery of various phases on the vertical and radial components. While this synthetic model uses a simple Gaussian source‐time function, a zero‐phase wavelet
corresponding to depths to discontinuities would be recovered regardless of the complexity of the source‐time function (as long as source‐time function does not
overlap in time with discontinuities). Dashed lines on radial autocorrelation represent spurious arrivals in the “correlation wavefield” (Phm et al., 2018). SNR =
signal‐to‐noise.
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1P2S phases in this case, and the timing of these phases can be predicted by the difference between the cor-
related wave arrivals (Text S3 and Movie S1). These phases are present on both the vertical and radial auto-
correlations but tend to be larger on the radial autocorrelation due to the similar amplitude of the Pmp
arrival with other phases on the radial component.

2.2. H‐κ Stacking

Using the P‐to‐S conversions on receiver functions, we can applyH‐κ stacking analysis to solve for depths to
discontinuities (H) and their associated VP/VS ratio (κ) in a layer (Zhu & Kanamori, 2000). H‐κ stacking is a
widely used approach that predicts the timing of converted phases over a range of H and VP/VS space for
different ray parameters and sums the receiver function amplitudes at the predicted times to find where con-
version amplitudes are maximized. The equations for the travel times of the converted phases relative to the
P‐wave arrival time are given by

tPs ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VS
2 −p

2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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t1P2S ¼ 2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VS
2 −p

2

r
; (3)

where H is the layer thickness, VS is the shear wave velocity, VP is the P‐wave velocity, and p is the ray para-
meter (Zandt et al., 1995). This system of equations is linearly dependent, having three unknowns (H, VP,
and VS) but only two independent equations (e.g., tPs + t2P1S = t1P2S). Thus, to apply H‐κ stacking analysis,
one of these parameters is commonly assumed. Given the relatively low trade‐off of P‐wave velocity with
layer thickness (ΔH ¼ ∂H

∂VP
ΔVPe5ΔVP km), the P‐wave velocity in the layer of interest is generally the

assumed parameter (Zhu & Kanamori, 2000).

To calculate the amplitudes usingH‐κ analysis, the stacked amplitudes of the receiver functions within a par-
ticular bin are summed along the predicted moveout curves, represented by

s H; kð Þ ¼ ∑
N

n¼1
∑
M

m¼1
wmrnm; (4)

wherew is a weighting factor forM phases that will be included in the stacking analysis (commonly tPs, t2P1S,
and t1P2S), which includes the effects of polarity changes depending on phase (where the sum of the absolute
values of w = 1), and r is the amplitude of receiver functions stacked into N ray‐parameter bins. The t1P2S is
not necessary to calculate VP/VS ratios due to its linear dependence with the other phases but can be added to
contribute to the sum of the amplitudes to better constrainH‐κ space if it is a coherent arrival. In practice, the
arrival associated with the t1P2S phase tends to be weak or difficult to observe, as it arrives relatively late in
the P‐wave coda. The grid search results forH‐κ stacking using the tPs and t2P1S phases on the synthetic recei-
ver functions (Figure 1c) are shown in Figure 3a.

2.3. Calculating Uncertainty

Calculating errors from H‐k stacking analysis is not straightforward. Populations of “good” solutions were

defined as solutions with amplitudes within the standard error of the maximum amplitude (e.g., 1−σM ¼ 1

−

ffiffiffiffiffi
σs2
N

q
, where N = the number of events in the stack; Eaton et al., 2006). While solution populations tend to

be Gaussian‐distributed overH‐κ space, the solution that produces themaximum amplitude does not need to
be at the center of the Gaussian distribution. Thus, the solution and associated uncertainties cannot be prop-
erly characterized by the mean and standard deviation of the solution population. Therefore, to calculate the
uncertainties from the H‐κ stacking results, we report the 15.9% and 84.1% quantiles of the solution popula-
tion, which corresponds to middle 68.2% of solutions and is analogous to the standard deviation for
Gaussian‐distributed populations, while reporting the maximum amplitude as the preferred solution.
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2.4. Plotting in Parallel Coordinates

AsH‐κ stacking only employs a grid search over two dimensions (H and κ), the results are easy to visualize in
two‐dimensional space. However, an equivalent way to show the results ofH‐κ stacking is through the use of
parallel coordinates (Figure 3; Inselberg, 2009; Heinrich & Weiskopf, 2013). In this approach, solutions are
plotted in parallel in one‐dimensional space. We connect individual solutions by colored lines corresponding
to the solution amplitude, which allows for the easy perception of trade‐offs between parameters (Figure 3b).
While the use of parallel coordinates is not necessary for visualizing two‐dimensional results, this approach
can be extended to N‐dimensions, allowing us to easily visualize the solutions and trade‐offs in higher‐
dimensional space.

2.5. H‐κ‐VP Stacking

The addition of the autocorrelation allows for the recovery of the Moho‐reflected P‐wave (Pmp), which is
strictly controlled by the thickness and VP of the layer of interest (Figure 2). The timing of the Pmp phase
can be predicted with the equation:

tPmp ¼ 2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

VP
2 −p

2

r
: (5)

On inspection, one can see that this equation is still linearly dependent on tPs and t2P1S (e.g., t2P1S − tPs =
tPmp), so obtaining the timing of this phase alone does not contribute independent information to help us
constrain our three unknowns. For example, even in traditional receiver function studies, we could use
the difference in arrival times between the t2P1S and tPs phases to solve for the average P velocity in the layer.
However, introducing the autocorrelation has two major advantages over solving for VP using the receiver
function arrivals: (1) The moveout of the tPmp phase is steeper than that of tPs and t2P1S due to its indepen-
dence ofVS, and (2) more importantly, the autocorrelation gives us a tPmp observation against which to check
the validity of the result of the H‐κ stack. Thus, we can add terms to equation (4) from the autocorrelations
that help constrain the solution in H‐κ‐VP space following similar lines of logic as adding the redundancy of
the t1P2S phase inH‐κ stacking analysis. The generalized equation, which can be used to sum over all phases
of interest in the receiver functions and autocorrelations, is

s H; κ;VPð Þ ¼ ∑
L

l¼1
∑
M

i¼1
wi eril þ ∑

N

j¼1
wMþjfZjl þ ∑

O

k¼1
wMþNþkfRkl

 !
; (6)

where w is a weighting factor for M + N + O phases that will be included in the stacking analysis from the
receiver functions, vertical autocorrelations, and radial autocorrelations (where the sum of the absolute values
in w = 1), er , eZ , and eR are the stacked amplitudes of the receiver functions and autocorrelations in L ray‐
parameter bins normalized to themaximum stacking amplitude for that data set (i.e., themaximum amplitude
contribution from each data set is equal to the corresponding weight for that data set). In this study, we do not
include the radial autocorrelation in theH‐κ‐VP stacking analysis, as the Pmp phase on the radial autocorrela-
tion has a relatively low amplitude and may be contaminated by the spurious arrivals of the correlation wave-
field, while the S‐wave converted energy (Ps, 2P1S, and 1P2S phases) is usually more apparent on the receiver
functions than on the radial autocorrelations (Figure 2b). However, they could be included in stacking if appar-
ent in the data. The amplitude of the tPmp phase is negative on both the vertical and radial autocorrelations, so
this sum must be subtracted to positively contribute to the H‐κ‐VP stacking amplitude, which we account for
implicitly in the weighting vector in equation (6). Since we exclude the radial autocorrelation and all P‐s con-
verted phases on the vertical autocorrelation, equation (6) is simply the stacked amplitude of the tPs and t2P1S
phase in the receiver functions (M = 2) and the tPmp phase from the vertical autocorrelation (N = 1). For sim-
plicity, s(H,κ,VP) is also normalized so that the maximum value of the stack equals one.

We applied the H‐κ‐VP stacking algorithm using a weighting of 0.4 and 0.2 for the receiver function Ps and
2P1S phase and 0.4 for the autocorrelation Pmp phase to the synthetic data for comparison with H‐κ results.
As with H‐κ stacking, the solution that resulted in the maximum stacking amplitude was taken as the best
solution, and uncertainties in theH‐κ‐VP stacking solutions were calculated in the same way as described in
section 2.2. Visualizing the results and trade‐offs betweenH, κ, and VP in Cartesian three‐dimensional space
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is not particularly helpful in gaining an intuitive understanding solution space, but is rather straightforward
when viewed in parallel coordinates (Figure 4).

H‐κ‐VP stacking has similar shortcomings asH‐κ stacking; it works best on homogenous layers with flat dis-
continuities where the highest amplitudes match the predicted moveouts of the respective phases. However,
introducing the amplitude information from the autocorrelations allows for the validation of the average P‐
wave velocity in a layer and constrains theH‐κ solution through decreasing the overall stacking amplitude if

Figure 3. H‐κ stacking analysis for synthetic data shown in equivalent representations of H‐κ parameter space. Solutions
for H‐κ stacking analysis at top. Synthetic data were created using H = 30 km, VP/VS = 1.75, VP = 6.2 km/s. Assumed VP
for stacking was 6.2 km/s. (a) Typical representation of H‐κ grid search with 2‐D surface colored by relative stacking
amplitude. Black contour represents solutions within the standard error of the maximum stacking amplitude. (b: left)H‐κ
solutions shown using parallel coordinates. Lines are colored by relative amplitude and are connected to show correla-
tions. All solutions are within the standard error of the maximum stacking amplitude. (b: right) Histogram of solutions
colored by relative amplitude. Box and whisker plots show maximum amplitude (middle line) and middle 68.2% of the
population distribution (box) along with the range of the “good” solutions (whiskers).

Figure 4. (a) Parallel plot ofH‐κ‐VP solutions for synthetic data. Solution sets are colored by amplitude to show trade‐offs
between various parameters. (b) Histogram of solutions colored by relative amplitude. Box and whisker plots show
maximum amplitude (middle line) and middle 68.2% of the population distribution (box) along with the range of the
“good” solutions (whiskers).
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the Pmp arrival is not observed on the autocorrelation. The relatively low trade‐off betweenH and VP allows
a significant portion of VP space to fall within the solution bounds (Figure 4); however, while uncertainties
in VP may be large, they are at least constrained by data rather than by simple assumptions about VP based
on geographic region or a priori assumptions (e.g., EARS, Crotwell & Owens, 2005; Crust1.0, Laske et al.,
2013). Adding the VP parameter also gives us more meaningful uncertainties in our H and VP/VS estimates,
as uncertainties in these parameters as a function of changes in VP are unquantified in typical H‐κ stacking
analysis. The effects of VP uncertainty on the uncertainties of H and VP/VS can be seen when comparing the
results of the H‐κ and H‐κ‐VP stacking (Figures 3 and 4).

3. Application to USArray Data
3.1. Data

We apply the above approach to data from the transportable array (TA) reference network (ds.iris.edu/mda/
_US‐REF). We analyzed data from 1,347 Mw ≥ 6 earthquakes occurring at 30–95 epicentral degrees away
from 88 TA reference stations between the years of 2000 and 2017 (Figure 5). These stations are from the long
running (>10 years) backbone network designed to provide a continental reference for the 18‐month deploy-
ment of most USArray TA stations. Initially, the seismograms were rotated into ZRT components and fil-
tered from 0.05 to 9 Hz. Data were then visually inspected, and records that did not show a clear P‐wave
arrival on the vertical component at a station were discarded before further analysis.

3.2. Receiver Functions

Quality‐controlled radial and vertical seismograms were used to calculate receiver functions using the time‐
domain iterative deconvolution method (Ligorría & Ammon, 1999) with a Gaussian alpha parameter of 2.8
(~1‐Hz center frequency), resulting in a total computation of 29,847 receiver functions. We removed any
receiver functions whose fit to the observed radial component seismogram after convolution of the receiver
function and the vertical component seismogramwas <80%. These imply inconsistency between the receiver
function and the observed data, generally resulting from low signal‐to‐noise ratios in the vertical and radial
components. Computed receiver functions were further manually inspected using the Funclab software
package (Eagar & Fouch, 2012; Porritt & Miller, 2018) to remove traces that showed structure inconsistent
with other computed receiver functions at a particular station or that recovered unrealistic Earth structure.
Receiver functions were then separated into 10 ray‐parameter bins (0.038–0.082 s/km at 0.0055 s/km per
bin) due to the different moveouts of the phases of interest and linearly stacked.

3.3. Autocorrelations

We apply the autocorrelation processing steps summarized in Figure 2 to the vertical and radial components
of the waveforms that resulted in high‐quality receiver functions. An example of the processing steps and

Figure 5. The U.S. Reference Network stations that were analyzed as part of this study. Networks denoted by colors and
shapes.
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results for real data is shown in Figure 6. Spectral whitening over a 0.34‐
Hz moving average window was applied to the spectrum of the earth-
quakes to boost high‐frequency energy, and the resulting seismogram
was low‐pass filtered at 5 Hz. The autocorrelation of the resulting wave-
forms was then computed for each event at each station and band‐pass fil-
tered between 0.25 and 1 Hz. Prior to computing the autocorrelations, we
also applied sign‐bit temporal normalization to seismograms after spectral
whitening, as has been used by autocorrelation studies using ambient
noise (Oren & Nowack, 2017; Tibuleac & von Seggern, 2012). In general,
we find that autocorrelations without sign‐bit temporal normalization
produce better results for earthquake‐based autocorrelations (Figure 7).

In practice, the narrow band of the filter and relatively low amplitude of
the Pmp arrival makes this phase difficult to recover. Only in high‐quality
data with a large number of events can a clear Pmp phase be observed on
the vertical autocorrelations after linear stacking in different ray‐
parameter bins. We therefore show phase‐weight stacking to enhance
the clarity of the Pmp phase (Figure 7). Phase‐weight stacking is a non-
linear stacking method that enhances the “in‐phase” signals associated
with low signal‐to‐noise ratio arrivals (Phạm & Tkalčić, 2017; Schimmel
& Paulssen, 1997). The strength of the nonlinearity of the phase‐weighted
stack is controlled by an exponential term, η, which when zero is equiva-
lent to a linear stack and becomes stronger at higher values. For this study,
we use an η of 2. Autocorrelation signals were downsampled to 10 samples
per second prior to phase‐weight stacking to create smoother stacks. This
downsampling does not change the character of the waveforms, as they
have been filtered with a high‐frequency corner of 1 Hz. Other passbands
were investigated as well (0.125–1 Hz, 0.25–2 Hz, and 0.125–2 Hz) and
were stacked using both linear and non‐linear approaches. These results
are similar to the 0.25‐ to 1‐Hz passband (Figures S1 and S2).

3.4. H‐κ‐VP stacking

We applied H‐κ‐VP stacking to linearly stacked 1‐Hz receiver functions
and vertical‐component autocorrelations. The weights used to sum the
different phases were generally 0.4 and 0.2 for receiver function Ps and
2P1S and 0.4 for vertical autocorrelation Pmp but were adjusted depend-
ing on the clarity of the phases. All ray‐parameter bins with data present
were given equally weighted contributions in the stacking procedure. The
grid search range forH, VP/VS, and VP was generally 25–60 km, 1.65–1.95,
and 5.6–7.2 km/s in steps of 0.2 km, 0.005 VP/VS, and 0.02 VP. While the
choice of the grid search range be subjective, it is important to choose
bounds that encompass realistic solutions to crustal properties given the
geologic context of an individual station. The step size for each parameter
is also subjective but needs to be fine enough to accurately represent
model space, which is important for constraining uncertainties in the final
results. This selection can be validated by using histograms of each para-
meters to ensure that solution populations have a more‐or‐less Gaussian
distribution. Solutions for each station were visually inspected and vali-
dated by plotting the predicted arrival times from the solutions within
the standard error of the maximum on the binned receiver function and
phase‐weight stacked autocorrelation results, as the Pmp phase is gener-
ally clearer on the phase‐weighted stacks than on the linear stacks. At sta-
tions where robust solutions were observed near the bounds of the grid

search, the grid search range was adjusted accordingly. It is important to note that performing H‐κ‐VP

Figure 6. Processing steps applied to station IU.HRV.00 located in
Massachusetts. (a) A vertical component record of a teleseismic earth-
quake filtered at 0.025–9 Hz (black) compared to spectrally whitened
earthquake signal (blue). Amplitude of whitened signal normalized to
nonwhitened signal for plotting. (b) Spectrum of observed teleseismic
earthquake (black), whitening operator calculated with a 0.34‐Hz moving
average width (red), and the resulting whitened spectrum (blue). (c)
Autocorrelation of whitened earthquake signal (blue in (a)). (d) Binned and
phase‐weight stacked autocorrelations for 179 events recorded at IU.
HRV.00. Moveout curves for Ps, Pmp, 2P1S, and 1P2S are shown for a model
with H = 27.8 km, VP = 5.96 km/s, and VP/VS = 1.69. Curves are colored by
polarity of expected arrival (blue = negative and red = positive). (e) Linearly
stacked receiver functions station IU.HRV.00 (same events as used to cal-
culate autocorrelations).
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stacking on phase‐weight stacked autocorrelations can produce different results, as frequency distortion and
phase shifts can occur as a result of the nonlinear stacking. Therefore, we prefer to use the phase‐weighted
stacks only to visually validate the H‐κ‐VP results from the linearly stacked data. We also apply H‐κ stacking
to the receiver function data at each station for comparison using an assumed VP of 6.2 km/s over the sameH
and VP/VS range as for H‐κ‐VP stacking analysis.

3.5. Gaussian Mixture Modeling

In some cases, multiple local maxima in H‐κ‐VP space are observed. In order to calculate the appropriate
error envelope for the individual solutions, the solution families must be separated. We use Gaussian
Mixture Modeling (GMM) to separate out different sets of solutions (McLachlan & Peel, 2004).

GMM is a generative distribution‐based unsupervised pattern recognition, or “cluster analysis,” algorithm.
GMM differs from k‐means clustering (Arthur & Vassilvitskii, 2007; Lloyd, 1982) in that it assumes that
the solutions are Gaussian distributed in model space rather than splitting model space into Voronoi cells

Figure 7. Comparison of linearly and phase‐weight stacked vertical and radial autocorrelations for station IU.HRV.00
with and without sign‐bit temporal normalization during “Step 1” in Figure 5. Autocorrelations are band‐pass filtered
from 0.25 to 1 Hz. We find that the signals of interest are most apparent in the phase‐weight stacked autocorrelations
without sign‐bit normalization, likely due to the preservation of wavelet shape and relative amplitude information.
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as in k‐means algorithms. GMM is somewhat similar to k‐means clustering in that it looks to minimize the
Euclidean distance between individual data points and “k” centroid locations, where k is a user‐defined
number of groups, but differs in that it normalizes the Euclidean distance by the covariance matrix, thus
maintaining sensitivity to trade‐offs between parameters.

To find the centroids in model space, an expectation‐maximization algorithm is applied (Dempster et al.,
1977). This is an iterative, stochastic algorithm that places kGaussian‐shaped centroids consisting of a mean
and standard deviation in data space, calculates probabilities that data points lie within this Gaussian pulse,
and perturbs the centroids until the joint probability distribution of the data and centroid locations are max-
imized. As solution populations in H‐κ and H‐κ‐VP spaces naturally cluster into Gaussian distributions,
GMM clustering is very effective at accurately separating out groups of solutions. To find k, H‐κ‐VP results
were visually inspected using parallel coordinate plots.

4. Results
4.1. Single Station Examples

The clarity and quality of the autocorrelation results at individual stations generally coincide with stations
that returned good receiver function results. Below, we show some representative examples of stations of dif-
ferent quality and compare their results from H‐κ‐VP stacking analysis with those from H‐κ stacking analy-
sis, as well as with other studies.

Station IU.HRV.00 in Massachusetts represents one of the best solutions in this data set, having clear Pmp,
Ps, 2P1S, and 1P2S phases (although 1P2S did not contribute to the stacking analysis). The H‐κ‐VP stacking
results do not significantly differ from those obtained byH‐κ stacking analysis (Figure 8), as the Ps and 2P1S
arrivals that produce the maximum amplitude in the H‐κ (black dashed line) and H‐κ‐VP stacking analysis
(colored lines) are identical. Introducing the Pmp phase, however, shows that the assumed VP forH‐κ stack-
ing of 6.2 km/s is slightly too fast compared to the ~6.0 km/s average VP obtained fromH‐κ‐VP stacking. This
relatively small change in VP also effects the estimates of VP/VS ratio by 0.02, resulting in an overestimation
of crustal thickness by 1.6 km, or 6% when relying only on H‐κ stacking.

At other stations, introducing the Pmp phase can result in large changes in the other parameters, even if
the assumed VP is relatively close to the true value. For example, station US.NLWA located in the Pacific
Northwest shows a very clear Pmp phase resulting in a recovered VP of 6.24 km/s (Figure 9). While only
negligibly different than the assumed VP in H‐κ stacking (6.2 km/s), the constraint of the timing of the
Pmp phase results in a rather large change in the estimated VP/VS ratio from 1.66 to 1.74 (corresponding
to a decrease in VS of 150 m/s) and a thinning of the crustal thickness estimate by 1.4 km. One can see
that there is no observable Pmp phase associated with the H‐κ stacking solution of H = 25.6 km and
VP/VS = 1.66 assuming a VP of 6.2 km/s in the autocorrelations (Figure 9, black dashed line). The result-
ing estimate of average crustal VS based on the H‐κ‐VP stacking solution (VS = 3.58 km/s) is also more con-
sistent with studies that utilize the sensitivities of surface wave dispersion data in this area to constrain
crustal shear velocity (~3.3 km/s, Schmandt et al., 2015; ~3.5 km/s, Delph et al., 2018) than the H‐κ solution
(VS = 3.73 km/s).

Some stations show much more complicated results than these relatively simple and high‐quality examples,
exhibiting multiple solutions that must be separated by cluster analysis. Station US.GOGA.00 shows an
example of where GMM is necessary to separate out solutions inH‐κ‐VP space in order to calculate meaning-
ful uncertainties (Figure 10). On visual inspection of the parallel plot (Figure 10c), it is clear that two solution
families exist: a thicker, high VP, and low VP/VS solution (pink) and thinner, low VP, and higher VP/VS solu-
tion (purple). While the thinner solution has higher stacking amplitudes overall, a clear 2P1S phase is not
seen for this solution (Figure 10b, purple lines ~14 s). Thus, the bulk crustal properties beneath the station
are likely more accurately represented by the thicker solution. This solution (H = 43.6 km, VP = 6.86 km/s)
is also much closer to the thickness and P‐wave velocity estimates from wide‐angle reflection data in
this region (H = 37–39 km and VP = 6.5–6.6 km/s; Hawman et al., 2012) than the alternative solution
(H = 30.0km, VP = 5.76 km/s). Thus, as with H‐κ stacking analysis, results of H‐κ‐VP stacking analysis
can be non‐unique and may require outside context to obtain the most likely estimate when multiple solu-
tions exist or the result is ambiguous.
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A similar inspection was done for all stations analyzed to verify that the H‐κ‐VP solutions were associated
with visible phases in the waveforms, and all results were compared to theH‐κ stacking solutions at the same
station (Figure S6). If multiple families of solutions were observed in the data, GMM cluster analysis was per-
formed to obtain the most likely solution and associated uncertainties. The parameters used for stacking
results (e.g., grid search range and weighting for individual phases) and solutions for each station can be
found in Table S1.

4.2. Comparison With Existing Models

The combined autocorrelation and receiver function results provide a relatively coarse background model of
crustal properties (thickness, average VP, and average VS) for the conterminous United States. We compare
our estimates of thickness and P‐wave velocity with Crust1.0 (Laske et al., 2013; Figure 11). Crust1.0 is a 1° ×
1° global model of crustal characteristics that uses crustal thickness estimates from receiver function and
active source studies and infers average crustal VP from the geologic context of a region and a global sedi-
ment thickness model. We also compare crustal thickness estimates with a model created from the multi-
mode stacking of P‐wave receiver functions on USArray data and our VS (or VP/κ) estimates to the
average vertical VS of the crust based on this thickness (Schmandt et al., 2015). To compare these 2‐D sur-
faces with our single‐station results, we simply extract the result from the nearest grid point in each model
to our stations.

Figure 8. Analysis of station IU.HRV.00 located inMassachusetts (red dot onmap). Results fromH‐κ andH‐κ‐VP stacking
analysis shown at the top. Predicted travel times for different phases calculated from theH‐κ‐VP stacking analysis solution
are colored by expected polarity of that phase (red = positive and blue = negative) on (a,b). Gray lines represent prediction
from solutions within the standard error of the maximum stacking amplitude. Black dashed lines represent solution
fromH‐κ stacking analysis. (a) Vertical autocorrelations. (b) Radial receiver functions. (c) Parallel plot ofH‐κ‐VP solutions
colored by relative amplitude. (d) Histogram of solutions colored by relative amplitude. Box and whisker plots show
maximum amplitude (middle line) and middle 68.2% of the population distribution (box) along with the range of the
“good” solutions (whiskers).
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In general, the pattern of crustal thickness variations are similar to other models, with thin crust through
most of the western United States and along the coastal plains of the southern and eastern United states
(Figure 11a). The root‐mean‐square difference between the crustal thickness estimates from our model
and the models of Crust1.0 and Schmandt et al. (2015) are 5.75 and 5.49 km, with 65% of the our results fall-
ing within 5 km of these models (shown for Crust1.0; Figure 11b). Of course, it is difficult to compare these
datasets directly as they are based on different data, methodologies, and assumptions. Our model, however,
has an advantage in that we obtain uncertainties alongside these estimates.

We also compare our VP results with those embedded within the Crust1.0 model, which is largely based
on the average velocity characteristics of different tectonic and geologic domains from active source
data (Figure 11c). Our results show a considerably wider range of average crustal VP compared to the
relatively narrow range predicted by Crust1.0 in the conterminous United States (Figure 11d).
Disagreement between our VP results and those from Crust1.0 could be explained by the relatively weak
strength of the Pmp phase in autocorrelations at many stations. This could be due to relatively small
changes in VP across the Moho depending on tectonic region or to backazimuthal variations in Moho
depth and velocity structure beneath a station that lead to deviations from the inherent 1‐D assumption
in H‐κ and H‐κ‐VP stacking analysis. Also, oversimplifications to velocity variations within different tec-
tonic domains in Crust1.0 or the fundamentally different sensitivities of the datasets used to constrain
crustal properties in Crust1.0 (mainly active source data) likely also contribute to the disagreement.

Figure 9. Analysis of station US.NLWA located at Neilton Lookout, Washington (red dot on map). Results from H‐κ and
H‐κ‐VP stacking analysis shown at the top. Predicted travel times for different phases calculated from the H‐κ‐VP stacking
analysis solution are colored by expected polarity of that phase (red = positive and blue = negative) on (a,b). Gray lines
represent prediction from solutions within the standard error of the maximum stacking amplitude. Black dashed lines
represent solution from H‐κ stacking analysis. (a) Vertical autocorrelations. (b) Radial receiver functions. (c) Parallel plot
of H‐κ‐VP solutions colored by relative amplitude. (d) Histogram of solutions colored by relative amplitude. Box and
whisker plots show maximum amplitude (middle line) and middle 68.2% of the population distribution (box) along with
the range of the “good” solutions (whiskers).
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When compared to the average crustal VS values of Schmandt et al. (2015), our results generally show a
wider range of values for a given tectonic province (Figures 11e and 11f). We calculate VS for our model
by simply dividing our VP solution by VP/VS ratio from H‐κ‐VP stacking. To calculate the average crustal
VS from Schmandt et al. (2015), we take the average VS above their crustal thickness estimates. The funda-
mental difference in the smoothness of the models likely stems from the smoothing associated with the
inversion of interstation Rayleigh‐wave phase velocities to 2‐D maps, as opposed to our localized single sta-
tion measurements. Anisotropy may also be playing a role in the disagreement of the VS results, as Rayleigh
waves are primarily sensitive to vertically‐polarized shear wave velocities while receiver functions are more
sensitive to horizontally‐polarized shear wave velocities. Regardless, our VS variations fromH‐κ‐VP stacking
analysis appear more heterogeneous than one might expect and likely represent complexity related to local
structure beneath stations that cannot be captured at the longer wavelengths of surface wave sampling. For
example, in regions of complex crustal structure, multiply‐reflected/converted phases from intracrustal dis-
continuities may interfere with signals generated from deeper primary structures, resulting in H‐κ‐VP solu-
tions that are erroneous. This heterogeneity is also reflected in the estimated VP/VS ratios (Figure 11g)
similar to other continental‐scale studies of these properties from H‐κ analysis (e.g., EARS; Crotwell &
Owens, 2005). Encouragingly, however, the slightly left‐skewed distribution of VP/VS ratios is consistent

Figure 10. Analysis of station US.GOGA.00 located in Godfrey, Georgia (red dot on map). Results from H‐κ and H‐κ‐VP stacking analysis shown at the top.
Predicted travel times for different phases calculated from the H‐k‐VP stacking analysis solution are colored by expected polarity of that phase (red = positive
and blue = negative) on (a,b). Thin lines represent prediction from solutions within the standard error of themaximum stacking amplitude colored by cluster group.
Black dashed lines represent solution from H‐κ stacking analysis. (a) Vertical autocorrelations. (b) Radial receiver functions. (c) Parallel plot of H‐κ‐VP solutions
colored by group from cluster analysis. (d) Histogram of solutions colored by relative amplitude. Box andwhisker plots showmaximum amplitude (middle line) and
middle 68.2% of the population distribution (box) along with the range of the “good” solutions (whiskers) and are colored by group from cluster analysis.
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with the expected VP/VS ratio for a crust of silicic bulk composition (~1.77; Christensen & Mooney, 1995;
Figure 11h).

5. Challenges Moving Forward

The H‐κ‐VP stacking approach provides a new way to help constrain layer thickness and velocity properties
using teleseismic data. The ability to add an independent observation to obtain the average P‐wave velocity
in a layer through the incorporation of coda autocorrelation provides a constraint on a parameter (VP) that is
commonly assumed based on tectonic context or from sparsely deployed active source experiments (e.g.,
Christensen & Mooney, 1995; Laske et al., 2013). Perhaps, more importantly, however, this methodology

Figure 11. Comparison of crustal thickness (a,b), VP (c,d), and VS (e,f) estimates from different models and VP/VS ratio
estimates from H‐κ‐VP analysis (g,h). (a) Background surface colored by Crust1.0 results. Triangles: Stations colored by
results of H‐κ‐VP analysis. Black lines are different tectonic domains of the United States. (b) Comparison between our
results (yaxis) at individual stations and Crust1.0 results (xaxis) at nearest grid point to our stations. Red line represents
perfect agreement between measurements. (c) Background surface colored by Crust1.0 VP estimates, which are largely
based on tectonic terrane. Triangles: Stations colored by results of H‐κ‐VP analysis. (d) Same as (b) but for VP. RMS
difference: 0.59 km/s. (e) Background surface colored by Schmandt et al. (2015) VS estimates. Triangles: Stations
colored by results ofH‐κ‐VP analysis. RMS difference: 0.35 km/s. (g) VP/VS ratio results and solution distribution (h) from
of H‐κ‐VP analysis.
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provides uncertainties for these measurements that can be used as a priori constraints for more detailed stu-
dies that use Bayesian methodologies, rather than simply assuming errors associated with the properties of
interest. For instance, surface wave and receiver function joint inversions simply assume an initial VS and
crustal thickness using the results of other studies, holding VP and commonly also VP/VS ratios constant
(e.g., Delph et al., 2015; Shen et al., 2013). This can lead to uncertainties in crustal thicknesses that are under-
estimated by up to 20% (Shen et al., 2013). This will obviously also affect the accuracy of the a posteriori
uncertainties of final shear velocities in these inversions, as it does not consider the contribution of variable
VP on surface wave phase velocities or the effects of VP on themoveout of receiver function arrivals. By better
constraining the average P‐wave velocity structure, correlated uncertainties between VP, H, and VP/VS ratio
can be more accurately quantified, propagated, and represented in detailed studies.

That the autocorrelation of body waves can provide an independent observation associated with the average
P‐wave velocity of a layer is certainly an improvement over a priori assumptions. However, the trade‐off
between VP and H is still relatively low, and the recovered Pmp phase tends to be relatively low amplitude
in practice. Possible ways to improve constraints on the recovered VP could involve including S‐wave recei-
ver functions (e.g., Rychert & Harmon, 2016) and S‐wave autocorrelations alongside the analysis presented
here, as well as increasing the clarity of the phases in autocorrelations through improved processing techni-
ques. Using the correlative methodologies of receiver functions and autocorrelations will allow for more
representative and consistent models of crustal thickness and velocity structure as opposed to models cre-
ated from methodologies with the inherently different sensitivities and resolutions (e.g., controlled‐source
data, receiver functions, and surface waves).

6. Conclusion

The P‐wave coda of teleseismic earthquakes provides detailed information about the layered structure of the
earth beneath a seismic station. Since Zhu and Kanamori (2000), body‐wave conversions and their multiples
have been analyzed via H‐κ stacking analysis of receiver functions to obtain the thickness (H) and P‐S velo-
city ratio (κ or VP/VS) in these layers. However, receiver functions have a weak sensitivity to P‐wave velocity,
leadingmost studies to hold this parameter fixed. This results in biased estimates of crustal properties as well
as unquantified correlated uncertainties by not accounting for variability in P‐wave velocity. As one use of
receiver function results is to provide starting model constraints for more detailed seismic analyses, these
underestimated uncertainties can propagate much further that the initial study. In this study, we apply a
modified version of H‐κ stacking analysis (H‐κ‐VP stacking) to 88 seismic stations that are spatially distrib-
uted throughout the United States. This analysis incorporates an amplitude term from the autocorrelation
of the P‐wave coda, which highlights Moho‐reflected P‐waves. As this waveform is independent of VS, it pro-
vides an independent observation that can be leveraged to constrain the average P‐wave velocity in a layer in
theH‐κ stacking procedure. Uncertainties in P‐wave velocity are also obtained through this approach, which
allows for a more appropriate quantification of uncertainty in the final estimates by accounting for covaria-
tion between H, VP, and VP/VS ratio. Using this analysis, we present a coarse model of crustal properties
throughout the United States that is unbiased by a priori assumptions and more accurately characterizes
uncertainties in crustal properties.
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