Parallel computing in solving eikonal equations

Qi Yingyu Supervisor: Prof. Tong Ping

Nanyang Technological University, Singapore

Outline

- Eikonal equation
- Past Iterative Method
- 3 Convergency
- 4 Numerical Results and Comparison

Spherical coordinate

Alkhalifah and Fomel 2001

Isotropic eikonal equation

$$\left(\frac{\partial t}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial t}{\partial \theta}\right)^2 + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial t}{\partial \phi}\right)^2 = \frac{1}{c^2}$$

Discretization

$$\begin{split} \max(D_{ijk}^{-r}t,-D_{ijk}^{+r}t,0)^2 + \max(D_{ijk}^{-\theta}t,-D_{ijk}^{+\theta}t,0)^2 + \max(D_{ijk}^{-\phi}t,-D_{ijk}^{+\phi}t,0)^2 &= \frac{1}{c_{ijk}^2}. \\ D_{ijk}^{-r}t &= \frac{t_{i,j,k}-t_{i-1,j,k}}{\Delta r}, \quad D_{ijk}^{+r}t &= \frac{t_{i+1,j,k}-t_{i,j,k}}{\Delta r}; \\ D_{ijk}^{-\theta}t &= \frac{t_{i,j,k}-t_{i,j-1,k}}{r\Delta \theta}, \quad D_{ijk}^{+\theta}t &= \frac{t_{i,j+1,k}-t_{i,j,k}}{r\Delta \theta}; \end{split}$$

 $D_{iik}^{-\phi}t = \frac{t_{i,j,k}-t_{i,j,k-1}}{r\sin\theta\Delta\phi}, \quad D_{iik}^{+\phi}t = \frac{t_{i,j,k+1}-t_{i,j,k}}{r\sin\theta\Delta\phi}.$

Fast marching method

Alkhalifah and Fomel 2001

Group marching method

Group Marching Method

Group marching method

Theorem

(Kim 2001) Let L be the close set, and define the set G as a subset of L,

$$G = \{x \in L : \phi(x) \le \phi_{L,min} + \frac{1}{\sqrt{2}f_{L,max}}\}. \tag{1}$$

where $\phi_{L,min} = \min\{\phi(x) : x \in L\}$ and $f_{L,max} = \max\{f(x) : x \in L\}$

Outline

- Eikonal equation
- Past Iterative Method
- 3 Convergency
- 4 Numerical Results and Comparison

Principle of Parallel Computing

- 1. the algorithm should not impose a particular update order
- the algorithm should not use a separate, heterogeneous data structure for sorting, and
- 3. the algorithm should be able to simultaneously update multiple points

Zingale and Woosley

Algorithm 3.1: SolveQuadratic(a, b, c, f)

comment: Returns the value $u=U_{\mathbf{x}}$ that solves $g(U,\mathbf{x})=0$, where $a\leq b\leq c$ $u\leftarrow c+1/f$ if $u\leq b$ return (u) $u\leftarrow (b+c+\operatorname{sqrt}(-b^2-c^2+2bc+2/f^2))/2$ if $u\leq a$ return (u) $u\leftarrow (2(a+b+c)+\operatorname{sqrt}(4(a+b+c)^2-12(a^2+b^2+c^2-1/f^2)))/6$ return (u)

Algorithm 3.2: UPDATE(X)

```
comment: 1. Initialization (X: set of grid points, L: active list)
    for each x \in X
                 do \begin{cases} \text{if } \mathbf{x} \text{ is source} \\ \text{then } U_{\mathbf{x}} \leftarrow 0 \\ \text{else } U_{\mathbf{x}} \leftarrow \infty \end{cases}
        for each x \in Y
                     do \begin{cases} \text{if any neighbor of } \mathbf{x} \text{ is source} \\ \text{then add } \mathbf{x} \text{ to } L \end{cases}
comment: 2. Update points in L
    while L is not empty
        \mathsf{do} \left\{ \begin{array}{l} p \leftarrow U_{\mathbf{x}} \\ q \leftarrow g(U_{\mathbf{x}}) \\ U_{\mathbf{x}} \leftarrow q \\ \mathsf{if} \mid p - q \mid < \epsilon \\ \\ \mathsf{do} \\ \end{array} \right. \\ \mathsf{do} \left\{ \begin{array}{l} \mathsf{for} \; \mathsf{each} \; 1\text{-neighbor} \; \mathbf{x}_{nb} \; \mathsf{of} \; \mathbf{x} \\ \mathsf{for} \; \mathsf{each} \; 1\text{-neighbor} \; \mathbf{x}_{nb} \; \mathsf{of} \; \mathbf{x} \\ \mathsf{for} \; \mathsf{each} \; 1\text{-neighbor} \; \mathbf{x}_{nb} \; \mathsf{of} \; \mathbf{x} \\ \mathsf{for} \; \mathsf{each} \; 1\text{-neighbor} \; \mathbf{x}_{nb} \; \mathsf{of} \; \mathbf{x} \\ \mathsf{for} \; \mathsf{each} \; \mathsf{for} \; \mathsf{for} \; \mathsf{each} \; \mathsf{for} \; \mathsf{each} \; \mathsf{for} \; \mathsf{for} \; \mathsf{each} \; \mathsf{for} \; \mathsf{each} \; \mathsf{for} \; \mathsf{for
```


Figure 3: Schematic 2D example of the change of the characteristic direction.

Outline

- Eikonal equation
- 2 Fast Iterative Method
- 3 Convergency
- 4 Numerical Results and Comparison

Lemma 3.1. For strictly positive speed functions, the FIM algorithm appends every grid point to the active list at least once.

Proof. For every non-source point, any path in the domain from that point to the boundary conditions has cost $< \infty$. As shown in the initialization step in pseudo code 0.3.2, all non-source points are initialized as ∞ . Hence, the active list grows outward from the boundary condition in one-connected rings until it passes over the entire domain.

Lemma 3.2. FIM algorithm converges.

Proof. For this we rely on monotonicity (decreasing) of the solution and boundedness (positive). From the pseudo code 0.3.2 we see that a point is added to the active list and its tentative solution is updated only when the new solution is smaller than the previous one. All updates are positive by construction.

Lemma 3.3. The solution U at the completion of FIM algorithm with $\epsilon=0$ (error threshold) is consistent with the corresponding Hamiltonian given in Equation 1.

Proof. Each point in the domain is appended to the active list at least once. Each point \mathbf{x} is finally removed from \mathcal{L} only when $g(U, \mathbf{x}) = 0$ and the upwind neighbors (which impact this calculation) are also inactive. Any change in those neighbors causes \mathbf{x} to be re-appended to the active list. Thus, when the active list is empty (the condition for completion), $g(U, \mathbf{x}) = 0$ for the entire domain.

Theorem 3.4. FIM algorithm, for $\epsilon = 0$ gives an approximate solution to Equation 1 on the discrete grid.

Proof. The proof of the theorem is given by the convergence and consistency of the solution, as given lemmas above. \Box

Outline

- Eikonal equation
- Past Iterative Method
- 3 Convergency
- Mumerical Results and Comparison

Homogeneous, Constant speed.

	2D				3D			
	256^{2}	512^{2}	1024^{2}	2048^{2}	32^{3}	64^{3}	128^{3}	256^{3}
FMM	0.141	0.563	2.516	11.547	0.094	0.922	10.812	129
GMM	0.062	0.312	1.328	6.079	0.062	0.469	4.469	39
FSM	0.063	0.266	1.484	5.968	0.062	0.5	5.532	44
FIM	0.078	0.313	1.282	5.516	0.047	0.406	3.578	30

Table 1: Running time on speed example 1

1-D Discontinuity

	2D				3D			
	256^{2}	512^{2}	1024^{2}	2048^{2}	32^{3}	64^{3}	128^{3}	256^{3}
FMM	0.141	0.641	3.813	31.82	0.093	0.937	11.20	165
GMM	14.79	67.67	304	1336	5.64	56.04	954	12916
FSM	0.063	0.266	1.484	5.937	0.093	0.922	11.57	109
FIM	0.141	0.672	4.032	31.61	0.062	0.531	6.609	50

Table 2: Running time on speed example 2

Inhomogeneous

(a) Example 3 speed map

(b) Example 3 solution

	$2D (256^2)$	$3D (256^3)$
FMM	0.141	174
GMM	0.078	54
FSM	0.172	188
FIM	0.141	108

Table 3: Running time on speed example 3

Example 4

	2D				3D			
				2048^{2}				
FMM	0.109	0.469	2.078	9.141	0.078	0.812	9.656	128
GMM	0.062	0.281	1.203	4.985	0.046	0.422	4.015	39
FSM	0.125	0.516	2.937	11.79	0.14	1.188	13.57	111
FIM	0.078	0.297	1.172	4.703	0.046	0.359	3.156	29

Table 4: Running time on speed example 4

Example 5

(b) Example 5

	2D				3D			
	256^{2}	512^{2}	1024^{2}	2048^{2}	32^{3}	64^{3}	128^{3}	256^{3}
FMM	0.125	0.532	2.328	10.7	0.078	0.922	13.87	290
GMM	9.937	51.18	265.25	1217	3.687	35.79	376.68	6493
FSM	0.11	0.453	2.656	9.5	0.109	1.203	16.28	154
FIM	0.125	0.516	2.235	9.5	0.125	1.328	16.61	233

Table 5: Running time on speed example 5

Performance

Figure 7: Comparison of CPU time increasing rate

	Example 1	Example 2	example 3	Example 4	Example 5
FMM	2.98	2.98	2.98	2.97	2.97
GMM	5.83	2.14	3.75	5.364	2.75
FSM	9	21	35	22	30
FIM	4.98	6.9	9.97	4.97	23.05

Table 6: Average number of solving quadratic equation per point on 256³

Performance

Figure 7: Comparison of CPU time increasing rate

	\mathbf{FMM}	GMM	\mathbf{FSM}	FIM
Large Speed Contrasts	+	_	+	+
Large Data Size	_	+	+	+
Varying Speed Values	_	+	_	_
Char. Dir. Changes	+	+	_	+
Parallelization	_	+	_	+

Table 7: Overall performance comparison on data categories

Thank you!

