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Eikonal equation

Spherical coordinate
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Eikonal equation

Isotropic eikonal equation
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Eikonal equation

Discretization
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Eikonal equation

Fast marching method
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Eikonal equation

Group marching method

Group Marching Method
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Eikonal equation

Group marching method

Theorem

(Kim 2001) Let L be the close set, and define the set G as a subset of L,

1
\/ifL,max } (1)

where ¢p min = min{p(x) : x € L} and fi max = max{f(x): x € L}

G:{XE L¢(X) §¢L,min+

Parallel computing in solving eikonal equations 8/29



Outline

@ Fast Iterative Method

Parallel computing in solving eikonal equations 9/29



Principle of Parallel Computing

1. the algorithm should not impose a particular update order

2. the algorithm should not use a separate, heterogeneous data structure
for sorting, and

3. the algorithm should be able to simultaneously update multiple points

Zingale and Woosley

Parallel computing in solving eikonal equations 10 /29



Fast lterative Method

Algorithm 3.1: SOLVEQUADRATIC(a, b, ¢, f)

comment: Returns the value u = Uy that solves g(U,x) =0, wherea < b < ¢
u—c+1/f

if u <breturn (u)

w e (b4 ¢+ sqrt( b 4 2be 2/[2))/2

if v < areturn (u)

U+ (2(u. b r:) | :-;qu.(f1(n. b (5)2 ]2((12 | b2 | & I/_f‘g)))/fi

return (u)
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Fast lterative Method

Algorithm 3.2: UpDATE(X)

comment: 1. Initialization (X : set of grid points, L : active list)
for each x € X
if x is source
do then Uy « 0
else Uy « oo
for each x € X

any neighbor of x is source

1
99 then add x to L

comment: 2. Update points in L

while L is not empty

for each x € L
p Uy
q < g(Ux)
Uy —q
if [p—gq| <e¢
for each l-neighbor x,; of x
do do if X,y is not in I
P Uy,
U.
then do 1" 9WUxu)
then {if p>gq
Us,, «q
the: b
hen {mm Xnp to L
remove x from L
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Fast lterative Method

(a) Initial stage (b) After first update (c) After second update
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Fast lterative Method
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Convergency of Fast lterative Method

Lemma 3.1. For strictly positive speed functions, the FIM algorithin ap-
pends every grid point to the active list al least once.

Proof. For every non-souree point, any path in the domain from that puml
to the boundary conditions has cost < oo, As shown in the initializ

1
step in psendo code 0.3.2, all non-source points are initialized as oo. Hence,

the active list grows outward from the boundary condition in one-connected
rings until it passes over the entire domain, O
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Convergency of Fast lterative Method

Lemma 3.2. FIM algorithm converges.

FProof. For this we rely on monotonicity (decreasing) of the solution and
houndedness (positive)., From the pseudo code (1.3.2 we see that a point is
added to the active list and its tentative solution is updated only when the
new solution is smaller than the previous one. All updates are positive by

a

construetion.
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Convergency of Fast lterative Method

Lemma 3.3. The solution U at the completion of FIM algorithm with ¢ = 0
{error threshold) is consistent with the corresponding Hamiltonian given in

fb'rpr.u.!inu i.

Proof. Each point in the domain is appended to the active list at least once.
Each point x is finally removed from £ only when g(I/, x) = 0 and the upwind
neighbors (which impact this caleulation) are also inactive. Any change in
those neighbors causes x to be re-appended to the active list, Thus, when
empty (the eondition for completion), g(U/,x) = 0 for the

O

the active list is

entire doma
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Convergency of Fast Iterative Method

Theorem 3.4. FIM algorithm, for € — 0 gives an approzimate solufion to
Fquation 1 on the discrete grid.
Proof. The proof of the theorem is given by the convergence and consistency

of the solution, as given lemmas above. O

Parallel computing in solving eikonal equations 19/29



Numerical Result:
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(a) Example 1

2D 3D
26067 | 5127 [ 10247 | 20487 | 327 | 647 | 128" [ 2567
FMM | 0.141 | 0.563 | 2.516 | 11.547 | 0.094 | 0.922 | 10.812 | 129
GMM | 0.062 | 0.312 | 1.328 | 6.079 || 0.062 | 0.460 [ 4.469 [ 30
FSM | 0.063 | 0.266 | 1.484 | 5968 | 0.062 | 0.5 5532 | 44
FIM | 0.078 | 0.313 | 1.282 | 5516 | 0.047 | 0.406 | 3.578 | 30

Table 1: Running time on speed example 1
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Numerical Results a

1-D Discontinuity

(b) Example 2

2D 3D
256° | 5127 | 10247 | 2048% | 32° [T 1287 [ 2567
FMM | 0.141 | 0.641 | 3.813 | 31.82 || 0.003 | 0.037 | 11.20 [ 165
GMM | 14.79 | 6767 | 304 1336 || 5.64 [ 56.04 [ 954 [ 12916
FSM | 0.063 | 0.266 | 1.484 | 5037 [[ 0003 [ 0.022 | 11.57 | 109
FIM | 0.141 | 0.672 | 4.032 | 31.61 | 0.062 | 0.531 | 6.600 | 50

Table 2: Running time on speed example 2
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Numerical Results and Compar

son

Inhomogeneous

(a) Example 3 speed map

(b) Example 3 solution

2D (2667) | 3D (2567

FMM | 0.141 174
GMM | 0.078 54
FSM | 0.172 188
FIM | 0.141 108

or: Prof. Tong Ping (Nanyan,

Table 3: Running time on speed example 3

Tec
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Numerical Results and Compal

Example 4

(a) Example 4

2D 3D
2562 | 5127 | 10247 | 2048 327 [ 647 | 1287 | 2567
FMM [ 0.109 | 0469 | 2.078 | 9.141 || 0.078 | 0.812 [ 9.656 | 128
GMM | 0.062 | 0.281 | 1.203 | 4.985 [[ 0.046 | 0.422 [ 4015 39
FSM | 0.125 | 0.516 | 2.937 [ 11.79 [[ 0.14 | 1.188 | 13.57 | 111
FIM [ 0.078 [ 0.297 | 1.172 | 4.703 || 0.046 | 0.350 | 3.156 | 20

Table 4: Running time on speed example 4
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Example 5

(b) Example 5

2D D
2667 [ 5127 | 10247 [ 20487 || 327 T 647 1287 | 2567
FMM | 0.125 | 0532 | 2328 | 10.7 | 0.078 | 0.922 | 13.87 | 290
GMM | 9.937 | 51.18 | 265.25 | 1217 || 3.687 | 35.79 | 376.68 | 6403
FSM | 0.1 | 0.453 | 2.666 | 9.5 | 0.109 | 1.203 | 16.28 | 154
FIM | 0.125 | 0516 [ 2235 | 95 [ 0125 | 1.328 | 16.61 | 233

or: Prof. Ton,

Table 5: Running time on speed example 5
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Performance

[or——

Figure 7: Comparison of CPU time increasing rate

Running Time Growing Rate

Sire

P

Example 1 | Example 2 | example 3 | Example 4 | Example 5
'MM 2,98 2.98 2.98 2.07
GMM 5.83 2.14 3,75 5.364
FSM 9 21 35 22
I'IM 4.98 6.9 0.97 4.97 23.06

Table 6: Average number of solving quadratic equation per point on 256%
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Numerical

Performance

Running Time Growing Rate

n—

Sire

Figure 7: Comparison of CPU time increasing rate

FMM | GMM | FSM | FIM
Large Speed Contrasts + - + +
Large Data Size - + + +
Varying Speed Values — + — —
Char. Dir. Changes + + — -+
Parallelization — + — +

Table 7: Overall performance comparison on data categories
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Thank you!
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