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Abstract

In this paper we propose a novel computational technique to solve
the Eikonal equation. The proposed method manages the list of active
nodes and iteratively updates the solutions on those nodes until they
converge. Nodes are added to or removed from the list based on a con-
vergence measure, but the management of this list does not entail the
the extra burden of expensive ordered data structures or special updat-
ing sequences. The proposed method has suboptimal worst-case perfor-
mance, but in practice, on real and synthetic datasets, performs fewer
computations per node than guaranteed-optimal alternatives. Further-
more, the proposed method uses only local, synchronous updates and
therefore has better cache coherency, is simple to implement, and scales
efficiently on parallel architectures, such as cluster systems or graphics
processing units. This paper describes the method, proves its consis-
tency, and gives a performance analysis that compares the proposed
method against the state-of-the-art Eikonal solvers.

1 Introduction

The applications of solutions to the Eikonal equation are numerous. The
equation arises in the fields of computer vision, image processing, geoscience,
and medical imaging and analysis. For example in computer vision, the
shape-from-shading problem, which infers 3D surface shape from the in-
tensity values in 2D image, can be modeled and solved with an Eikonal
equation [1, 9]. Extracting the medial axis or skeleton of the shape can be
done by analyzing solutions of the Eikonal equation with the boundaries
specified at the shape contour [14]. Solutions to the Eikonal equation have
been proposed for noise removal, feature detection and segmentation [6, 12].
In physics, the Eikonal equation arises in models of wavefront propagation.
For instance, the calculation of the travel times of the optimal trajectories
of seismic waves is a critical process for seismic tomography [8, 13].
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The Eikonal equation, a special case of nonlinear Hamilton-Jacobi partial
differential equations (PDEs), is given by

H(x,∇x) = |φ(x)|2 − 1

f2(x)
= 0, ∀x ∈ Ω (1)

where Ω is a domain in Rn, φ(x) is the travel time or distance from the
source, and f(x) is a positive speed function defined on Ω. For discretiza-
tion, the Godunov upwind difference scheme is widely used [9, 11, 19]. For
example, the first order Godunov upwind discretization of Eq 1 on a 2D
uniform grid is given by

g(U,x = (i, j)) = [(Ui,j − Uxmin
i,j )+]2 + [(Ui,j − Uymin

i,j )+]2 =
1

f2
i,j

(2)

where Ui,j is the discrete approximation to φ at x = (i, j), and Uxmin
i,j =

min(Ui−1,j , Ui+1,j), Uymin

i,j = min(Ui,j−1, Ui,j+1), and (x)+ = max(x, 0). A
3D discretization also can be defined in a similar fashion. Most solvers for
the Eikonal equation rely on the following observation: once the upwind
neighborhood values of a grid point are properly determined, Eq 2 can be
easily solved using standard solutions to quadratic equations. The upwind
neighbors of a grid point are those neighbors whose solutions have values
less than or equal to the grid point in question.

A number of different numerical strategies have been proposed to effi-
ciently solve the Eikonal equation, e.g. iterative schemes [9], expanding box
schemes [2, 3, 5, 15, 18], expanding wavefront schemes [4, 7, 10, 11, 17], and
the sweeping schemes [16, 19]. The iterative approaches rely on fixed-point
methods that solve a quadratic equation at each grid point with a Jacobi
update and repeat this process until it converges. A drawback of this strat-
egy is that it may require many iterations to converge and the complexity
(worst case) behaves as O(N2) where N is the number of points on the grid.
The expanding box schemes start from a source point and explore the neigh-
borhood of points contained in an expanding, square-shape wavefront. A
single pass is efficient O(N), but it cannot solve instances with large speed
contrasts with only a single update, and therefore additional correction steps
(iterations) may be required.

The expanding wavefront schemes do not restrict the advance of the
wavefront to any special shape. Instead, the wavefronts expand in the order
of the causality given by the equation and the speed function. An early work
of Qin et. al. [7] introduces this approach but they use a brute-force type
sorting method that impairs the performance. The fast marching method
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(FMM) [17, 10, 11], one of the most popular expanding wavefront methods,
uses a heap data structure to keep the updating order, and the complexity is
O(N log N), which is worst-case optimal (as in all Dijkstra-type problems).
Zhao [19] recently proposed the fast sweeping method (FSM) which employs
a Gauss-Seidel type update with a Godunov upwind discretization, and has
computational complexity O(kN), where k depends on the complexity of
the speed function.

The most efficient Eikonal equation solvers are based on adaptive up-
dating schemes and data structures. For instance, FMM uses a heap data
structure, which includes nodes from the entire wavefront. During each iter-
ation, the heap determines the as yet unsolved grid value that is guaranteed
to depend only on neighbors whose values are solved. The heap must be
updated with each updated grid value (O(log N)) and each grid point is
solved only once. For this algorithm, the heap becomes a bottleneck that
does not allow for massively parallel solutions, such as those available with
single instruction multiple datastream (SIMD) architectures. Furthermore,
grid points must be updated one at a time, in a way that does not guarantee
locality, limiting opportunities for coherency in cache or local memory.

FSM uses a Gauss-Seidel update that requires reading from and writing
to the single memory location that stores the grid value. This requirement
is inefficient or prohibited on some of the most efficient parallel architectures
(e.g., SIMD). Furthermore, as we shall see in the results of this paper, the
data-dependent performance parameter k in FSM can be quite large for the
complex input data. Thus, there remains a need for fast Eikonal solvers
that can run efficiently on both single processors and SIMD architectures for
complex data sets.

The proposed method relies on a modification of an iterative solution of
the upwind discretization of the equation. Unlike the traditional iterative
schemes, the proposed method selectively updates the points chosen by a
convergence measure and avoids using expensive ordered data structures or
special updating orders. The method is simple to implement and faster than
the existing methods on a wide range of speed functions in two and three
dimensions. In addition, the proposed algorithm can be easily ported to par-
allel architectures, including SIMD processors, cluster systems, or graphics
processing units.

In this paper we focus on the development of the algorithm and the eval-
uation on CPUs in order to make direct comparisons against other methods.
This paper presents a series of systematic comparisons of existing Eikonal
solvers in the literature. These empirical comparisons shed light on the
theoretical worst-case claims of the earlier work. While the worse-case per-
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formance of the proposed algorithm is not optimal, it performs much better
than worst case on a variety of complex data sets. While several papers
argue [4, 19] that the complexity of proposed algorithms is as low as O(N)
(i.e. best case), there have not been systematic studies to understand how
often such methods achieve these best cases or what the constants are that
affect the complexity. The actual performance of these algorithms is affected
by many different factors, including the size of the datasets or the geometric
configurations of the speed functions. One of the contributions of this paper
is a careful empirical analysis of the performance of the existing Eikonal
solvers, and comparisons against the proposed method in order to better
understand the benefits and limitations of each method.

The remainder of this paper proceeds as follows. In the next section we
introduce several most popular existing Eikonal equation solvers and discuss
benefits and limitations of those methods. In Section 0.3 we introduce the
proposed fast iterative method (FIM) in some detail. In Section 0.4 we show
numerical results on a number of different examples and compare with the
existing methods. In section 0.5 we summarize the paper and discuss the
future research directions related to this work.

2 Previous Work

In this section we discuss three recent proposed solvers for the Eikonal equa-
tions in some detail. These solvers represent several different strategies
which are indicative of state-of-the-art solvers. This discussion will give
the relevant background for the proposed method and provide a basis for
understanding the empirical comparisons among these algorithms.

2.1 Fast Marching Method

Tsitsiklis [17], and later Sethian [10, 11] proposed a worst-case optimal
method for solving the Eikonal equation. The so-called fast marching method
uses a heap to sort points on the moving wavefront. This is based on the
property of the solution that guarantees the characteristics are a steepest
descent on φ. The solution φ of the Eiknoal equation therefore can be con-
structed by expanding a wavefront from a source to a downwind direction
using an upwind discretization. The solution at each point depends only on
points with smaller values, and updating the minimum value on the wave-
front using the heap maintains this condition.

The algorithm uses three different regions, Alive, Close, and Far [11].
Alive is a set of points whose values are already found and fixed, and the
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boundary of the set is called wavefront. Close is the set of points that are
adjacent to Alive. Far consists of those points that are not yet explored,
i.e., they are note Alive or Close. The algorithm starts by putting the
boundary conditions into the set Alive, and computing upwind solutions for
all the adjacent points and adding them to Close. The tentative upwind
solutions for the set Close are used in a min-heap datastructure on that set.
At each iteration, the top of the heap p is removed and the value of that
node is set to the tentative solution (which must be correct by the causality
condition). The point p is moved from Close to Alive, and the values of its
1-neighbors (on the grid) are updated and added to Close. This find-and-
update procedure is repeated until Close is empty, which indicates that all
points have been explored and are Alive.

The performance of the algorithm depends on the size of the input data
and the data structure. Inserting/deleting an element in a heap requires
O(log h), where h is the size of the set Close (size of the wavefront). This
is done for each point on the grid, which gives O(N log h), and because
h < N we have O(N log N) as the asymptotic worst case, which is optimal.
As we might expect, the algorithm performs consistently, and variations in
performance depend only on the complexity of the wavefront, which changes
the average values of h. In practice, however, the log h cost of maintaining
the heap can be quite significant, especially for large grids or when solving
for wavefronts on 3D or higher dimensions.

2.2 Group Marching Method

FMM updates only a single point at a time because whenever a point is up-
dated the heap also must be updated to maintain the correct order. Consider
the worst case, in which the value of every point on the current wavefront
(Alive) depends on the update of a single point. In this case, the update
of the point forms a computational bottleneck, and FMM, which finds the
point and maintains the heap in O(log N) time, is optimal. Kim [4] observes
that this worst-case scenario is rare and in practice one can safely update
multiple points on a given wavefront. Thus, he proposes the group marching
method (GMM) based on the following theorem:

Theorem 2.1. Let L be the close set, and define the set G as a subset of L

G = {x ∈ L : φ(x) ≤ φL,min +
1√

2fL,min

} (3)

where φL,min = min{φ(x) : x ∈ L} and fL,min = min{f(x) : x ∈ L}. Then
the solutions for the set G can be found simultaneously at a time.
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GMM avoids using a heap but maintains a list of points using a simple
data structure, e.g. a linked list, and updates a group of points in the list
that satisfies the condition of theorem 0.2.1 at the same time. The author
argues that the computational complexity of the proposed method is, in
principle, O(N).

However, the condition in Eq 3 requires a knowledge of the minimum φ
and f in the close set L to determine the group G in every update step. In
general, it may require O(N) to find this value. To resolve this, [4] suggests
using a global bound for G which increases incrementally as the wavefront
propagates. Thus, for each update step, G is a set of points x in L that
satisfies φ(x) ≤ TM , where the global bound TM is initially set as the
minimum φ in the initial narrow band and is increased by 1

fΩ,max
where

fΩ,max = max{f(x) : x ∈ Ω}, which is computed in a preprocessing step.
If the speed function has large contrasts then only a few points (or even no
points) can be updated at each iteration and the algorithm may require a
large number of iterations, which impairs performance.

2.3 Fast Sweeping Method

In some cases, the characteristic path, which is the optimal trajectory from
one point to another, does not change its direction, as is the case in com-
puting the shortest path on an homogeneous media. If such cases, we can
solve the Eikonal equation by updating solutions along a specific direction
without explicit checks for causality. Based on this observation, Zhao [19]
proposed the fast sweeping method, in which the Eikonal equation is solved
on an n-dimensional grid using at least 2n directional sweeps, one per each
quadrant, within a Gauss-Seidel update scheme.

Consider a simple 2D example where the input data is homogeneous
media (f is constant) and the source is the origin. For the continuous case,
the t-level set of the Eikonal equation is a circle with a radius t centered
at the origin, and on the discrete grid we have some approximation to this
given by the upwind scheme. The characteristic paths for this example are
the straight lines passing through the origin (Fig 1a). Hence, every point in
the first quadrant depends only on its left and/or down neighborhood points
to solve the Eikonal equation (Fig 1b). Thus, sweeping from the origin to
the right and up direction can produce exact solutions for the points in the
first quadrant. There are two possible sweeping directions for each axis, so
n-dimensional data needs at least 2n sweepings. This method works very
well on speed functions for which the characteristic paths do not undergo
many changes in direction, however, some applications have inhomogeneous
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(a) Characteristic paths (dotted lines)

Alive

characteristic

i−1,j

i,j−1

i,j+1

φ φ

φ

φ

i+1,jφ
i,j

(b) Neighborhood for φi,j

Figure 1: 2D example of characteristic paths and neighbors for solving the
Eikonal equation in the first quadrant

speeds with complex characteristic paths. In such cases the sweeping method
must iterate until it converges, and the performance is significantly reduced.

3 Fast Iterative Method (FIM)

In this section we propose an Eikonal solver based on a selective iterative
method, which we call the Fast Iterative Method (FIM). The main design
goals in order to produce good overall performance, cache coherence, and
scalability across multiple processors are:

1. the algorithm should not impose a particular update order

2. the algorithm should not use a separate, heterogeneous data structure
for sorting, and

3. the algorithm should be able to simultaneously update multiple points

Criterion 1 is required for cache coherency and streaming architectures.
For example, FMM updates solutions based on causality and requires a
random access on the memory which impairs cache coherency. Streaming
architectures, such as GPUs, are optimized for certain memory access pat-
terns and the special update orders given by the program could force one to

7
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violate those patterns. Control of the update order allows an algorithm to
update whatever data is in cache (e.g., local on the grid). Criterion 2 is re-
quired for SIMD and streaming architectures. For example, FMM manages
a heap, which is relatively smaller than the main solution grid, to keep track
of causality in the active list. Operation on a heap is multiple instructions
on the small datasets, and this cannot be efficiently implemented on SIMD
or streaming architecture that is more favorable to process large datasets
with a common operation. Criterion 3 allows an algorithm to fully utilize
the parallel architecture of cluster systems or SIMD/multi-core processors
to increase throughput.

3.1 Algorithm description

FIM is developed based on observations from the two well-known numerical
Eikonal solvers. One approach is the iterative method given by Rouy et
al. [9], which updates the solution for every point iteratively until it con-
verges. This method does not rely on the causality principle and is simple to
implement. However, the method is inefficient because every grid point must
be visited (and a quadratic evaluated) until the solutions on the entire grid
have converged. The other related approach is FMM [10, 11], which uses
the idea of a narrow band of points on the wavefront, and thereby updates
points selectively (one at a time) by managing a heap.

The main idea of FIM is to solve the Eikonal equation selectively on the
grid points without maintaining expensive data structures. FIM maintains a
narrow band, called the active list, for storing the grid points that are being
updated. Instead of using a special data structure to keep track of exact
causal relationships, we maintain a looser relationship and update all points
in the active list simultaneously. During each iteration, we expand the list
of active points, and the band thickens or expands to include all points that
could be influenced by the current updates. A point can be removed from
the active list when the solution is converged.

To update the solutions of the points in the active list, we use the Go-
dunov upwind discretization of the Eikonal equation (Eq 2) and solve the
equation using a quadratic solver. The pseudo code for computing the so-
lution of 3D Eikonal equation, which takes as input values a, b, c of upwind
neighbors in the cardinal directions of the grid and f as a speed, is as follows:

8
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Algorithm 3.1: SolveQuadratic(a, b, c, f)

comment: Returns the value u = Ux that solves g(U,x) = 0, where a ≤ b ≤ c

u← c + 1/f
if u ≤ b return (u)
u← (b + c + sqrt(−b2 − c2 + 2bc + 2/f2))/2
if u ≤ a return (u)
u← (2(a + b + c) + sqrt(4(a + b + c)2 − 12(a2 + b2 + c2 − 1/f2)))/6
return (u)

The main algorithm consists of two parts, the initialization and the up-
dating. In the initialization step, we set the boundary conditions on the grid,
and set the values of the rest of the grid points to infinity (or some very large
value). Next, the neighbors of the source points in the cardinal directions
(4 in 2D and 6 in 3D) are added to the active list L. In the updating step,
for every point x ∈ L we compute the new Ux by solving Eq 2 and check
if the point is converged by comparing the previous and new Ux values. If
so, we remove the point from L, and add any 1-neighbor points to L that
are not in L and have not converged yet. Note that newly added points
must be updated in the next updating iteration, so these points should be
added before the deleted point in L. In our implementation, we use a doubly
linked list for L, and new points are added right before the deleted point.
The updating step is repeated until L is empty. The following pseudo code
explains the proposed algorithm.

9
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Algorithm 3.2: Update(X)

comment: 1. Initialization (X : set of grid points, L : active list)

for each x ∈ X

do







if x is source
then Ux ← 0
else Ux ←∞

for each x ∈ X

do

{

if any neighbor of x is source
then add x to L

comment: 2. Update points in L

while L is not empty

do



























































































for each x ∈ L

do



















































































p← Ux

q ← g(Ux)
Ux ← q
if |p− q| < ǫ

then















































for each 1-neighbor xnb of x

do































if xnb is not in L

then























p← Uxnb

q ← g(Uxnb
)

if p > q

then

{

Uxnb
← q

add xnb to L
remove x from L

3.2 Properties of the algorithm

In this section we describe how the algorithm works in detail. Figure 2 shows
the schematic 2D example of FIM frontwave expanding in the first quadrant.
The lower-left corner point is the source point, the black points are fixed
points, the diagonal rectangle containing blue points is the active list, and
the black arrow represents the narrow band’s advancing direction. Figure 2
(a) is the initial stage, (b) is after the first update step, and (c) is after the
second update step. Because blue points depend only on the neighboring
black points, all of the blue points in the active list can be updated at the
same time. If the characteristic path does not change its direction to the

10
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other quadrant, then all the updated blue points will be fixed (become black
points) and their 1-neighbor white points will form a new narrow band.

(a) Initial stage (b) After first update (c) After second update

Figure 2: Schematic 2D example of FIM frontwave propagation.

FIM is an iterative method, meaning that a point is updated until its
solution converges. However, for many data sets most points require only a
single update to converge. This can be interpreted as follows. If the angle
between the direction of the characteristic path and the the narrow band’s
advancing direction is smaller than 45 degree, then the exact solution at the
point can be found only in a single update, as in the fast sweeping method.
If the angle is larger than 45 degrees, the point at the location where the
characteristic path changes the direction will have an initial value that is
computed using the wrong up-wind neighborhood, and it will be revised in
successive iterations as neighbors refine their values. Thus, that point will
not be removed from the active list and will be updated until the correct
value is computed. Figure 3 shows this situation. Unlike FMM, where the
wavefront propagates with closed, 1-point-thick curves, the FIM can result
in thicker bands that split in places where the characteristic path changes
the direction (Fig 3 (a) red point). Also, the wavefront can move over so-
lutions that have already converged, and reactivate them to correct values
as new information is propagated across the image. Thus, the worst-case
performance of FIM is suboptimal. The following section gives the results of
empirical studies, including situations where this worst-case behavior under-
mines computational efficiency of FIM and compares the results with those
of the other state-of-the-art solvers.

To prove correctness of the algorithm, we follow reasoning similar to that
described in [9].

11
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(a) (b) (c)

Figure 3: Schematic 2D example of the change of the characteristic direction.

Lemma 3.1. For strictly positive speed functions, the FIM algorithm ap-
pends every grid point to the active list at least once.

Proof. For every non-source point, any path in the domain from that point
to the boundary conditions has cost < ∞. As shown in the initialization
step in pseudo code 0.3.2, all non-source points are initialized as ∞. Hence,
the active list grows outward from the boundary condition in one-connected
rings until it passes over the entire domain.

Lemma 3.2. FIM algorithm converges.

Proof. For this we rely on monotonicity (decreasing) of the solution and
boundedness (positive). From the pseudo code 0.3.2 we see that a point is
added to the active list and its tentative solution is updated only when the
new solution is smaller than the previous one. All updates are positive by
construction.

Lemma 3.3. The solution U at the completion of FIM algorithm with ǫ = 0
(error threshold) is consistent with the corresponding Hamiltonian given in
Equation 1.

Proof. Each point in the domain is appended to the active list at least once.
Each point x is finally removed from L only when g(U,x) = 0 and the upwind
neighbors (which impact this calculation) are also inactive. Any change in
those neighbors causes x to be re-appended to the active list. Thus, when
the active list is empty (the condition for completion), g(U,x) = 0 for the
entire domain.

12
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Theorem 3.4. FIM algorithm, for ǫ = 0 gives an approximate solution to
Equation 1 on the discrete grid.

Proof. The proof of the theorem is given by the convergence and consistency
of the solution, as given lemmas above.

4 Results and Discussion

Several algorithms from the literature report worst or best case perfor-
mances, but to understand the actual performance of algorithms in realistic
settings we have conducted a systematic empirical comparison. We have im-
plemented and tested the various algorithms on an Windows PC, equipped
with a Pentium 3.6 gigahertz CPU and 2 gigabytes of main memory. For this
paper, we focus only on single processor performance, with the understand-
ing that this performance and intrinsic scalability will decide the parallel
performance of the algorithms.

We have constructed five different synthetic speed examples for input to
the Eikonal solvers. These speed functions capture various situations that
are important to the relative performance of the different solvers including
constant speeds, large speed contrasts, and large changes in characteristic
directions. The boundary conditions consist of a single point with a distance
of zero, unless stated otherwise, and the domain is normalized to the size
Ω = [0, 1]3. The tables given below measure the CPU times in seconds. The
relative difference in solutions that constiutes convergence for both FSM and
FIM is 10−6. The speed examples we use for the experiment are as follows:

Example 1 f = 1, constant speed with a single source

Example 2 f =

{

3 for x ∈ [1
3
, 1

3
]× [1

3
, 1

3
]× [1

3
, 1

3
]

0.001 otherwise
Example 3 Correlated random speed between 50 to 250
Example 4 f = 1, constant speed with maze-like barriers

Example 5 f =























1 if x ∈ [0, 1

5
]

10 if x ∈ [1
5
, 2

5
]

100 if x ∈ [2
5
, 3

5
]

1000 if x ∈ [3
5
, 4

5
]

10000 if x ∈ [4
5
, 5

5
]

In the following section, we compare the running time of Eikonal solvers
on the different speed examples. In section 0.4.2, we give a detailed perfor-
mance analysis using average number of computations per point, especially
focusing on FMM and FIM.
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4.1 Running time comparison

Example 1 is the simplest case, computing a distance field over a homo-
geneous media. Fig 4 (a) shows the level sets of the solution. The speed
function is constant, so the t-level set of φ is the circle/sphere with the
radius t from the source. Table 1 compares the CPU time of 2D and 3D
Eikonal solvers for speed example 1. FSM converged only after five sweeps
in 2D and nine sweeps in 3D due to the simplicity of the example. GMM,
the FSM, and FIM run about two to four times faster than FMM on this
example.

2D 3D
2562 5122 10242 20482 323 643 1283 2563

FMM 0.141 0.563 2.516 11.547 0.094 0.922 10.812 129

GMM 0.062 0.312 1.328 6.079 0.062 0.469 4.469 39

FSM 0.063 0.266 1.484 5.968 0.062 0.5 5.532 44

FIM 0.078 0.313 1.282 5.516 0.047 0.406 3.578 30

Table 1: Running time on speed example 1

(a) Example 1 (b) Example 2

Figure 4: Level set of the solution of speed function examples 1 and 2

Example 2 is a binary speed image. The speed of the inner square is
3 and the outer region is near zero. This example models a domain that
consists of two different materials. This could represent, for instance, water
and rock, which are often found in simulations of seismic datasets. Figure 4

14
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(b) shows the level sets of the solution, and Table 2 shows the running
time of the Eikonal solvers on this example. In 2D, FSM converges after
five sweeps, the fastest of those we compared, while FIM and FMM both
require a similar (slower) time. However, in 3D, FIM is the fastest. The
difference between 2D and 3D results can be explained by the increased
area of the wavefront, which penalizes FMM, and the increased number of
sweep directions, which drives the compute time of FSM (20 sweeps were
required for this example). GMM is the slowest both in 2D and 3D for this
speed function because the performance of the method highly depends on
the input speed contrasts. GMM updates a group of points selected by a
gradually increasing global bound, and the amount of increment is decided
by the reciprocal of the largest speed value. Hence, if the speed contrast
is large and the current wavefront is located on the slow region, then the
method takes many iterations to move the current wavefront on that region.

2D 3D
2562 5122 10242 20482 323 643 1283 2563

FMM 0.141 0.641 3.813 31.82 0.093 0.937 11.20 165

GMM 14.79 67.67 304 1336 5.64 56.04 954 12916

FSM 0.063 0.266 1.484 5.937 0.093 0.922 11.57 109

FIM 0.141 0.672 4.032 31.61 0.062 0.531 6.609 50

Table 2: Running time on speed example 2

Example 3 is generated by blurring and rescaling the random noise image
to create correlated random speed values. This example resembles the kind
of speed functions that are observed in real seismic data. Fig 5 (a) shows
the speed example (black : 50, white : 250), and (b) is the level set of
the solution on that example. Table 3 compares the running time of the
solvers on 2D (one slice) and 3D (entire volume) examples. FIM and GMM
perform far better than FMM and FSM on this example. Especially, GMM
runs about three times faster than FMM because the example does not have
large speed contrasts. For 3D, FSM requires 35 sweeps to converge on this
example.

Example 4 is designed to simulate a dataset with varying characteristic
directions. Several barriers with open holes at the ends are placed to force
the characteristic paths to turn several times. The solutions on the barri-
ers are not computed, making no characteristic path can pass through the
barriers. Figure 6(a) shows the barriers and the level sets of the solution.
Example 4 contains numerous changes in the directions of the characteris-
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2D (2562) 3D (2563)

FMM 0.141 174

GMM 0.078 54

FSM 0.172 188

FIM 0.141 108

Table 3: Running time on speed example 3

(a) Example 3 speed map (b) Example 3 solution

Figure 5: Example 3 speed map and the level sets of the solution

tics, and thus FSM takes up to 10 sweeps in 2D and 22 sweeps in 3D to
converge. Meanwhile, FIM and GMM work nicely on this example because
the length of the narrow band is short, allowing the updating of the list to
take lesser time than the previous examples. Table 4 shows that FIM oper-
ates the fastest, about four times faster than FMM or FSM in 3D. GMM is
slightly slower than FIM but also runs very efficiently on this example.

Example 5 is designed so that the Euclidean distance for the points in
the upper-left corner region is longer than the actual distance based on the
speed function for those. Such a configuration will impair the performance
of FIM because multiple updates are required for each point. Figure 6
(b) shows the color map of the solution on speed example 5 (red:max dist,
blue:min dist). As expected, FIM did not work well on this example, but
interestingly GMM also performs poorly. This is because the example has
very large speed contrasts (minimum 1 to maximum 10000). FSM is the
fastest on this example because of the relatively simply geometries.

16
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2D 3D
2562 5122 10242 20482 323 643 1283 2563

FMM 0.109 0.469 2.078 9.141 0.078 0.812 9.656 128

GMM 0.062 0.281 1.203 4.985 0.046 0.422 4.015 39

FSM 0.125 0.516 2.937 11.79 0.14 1.188 13.57 111

FIM 0.078 0.297 1.172 4.703 0.046 0.359 3.156 29

Table 4: Running time on speed example 4

(a) Example 4 (b) Example 5

Figure 6: Level sets of the solution of speed example 4 and 5

Fig 7 compares the increasing rate of the running time on different data
sizes (in 3D) on speed example 1. The graphs represent the scaled CPU time
to show how much the running time increases on larger datasets compared to
that of the smallest data size. FIM and the show the slowest growing CPU
times, about half of that of FMM. The CPU time for FSM grows slightly
faster than FIM or GMM but much slower than FMM.

4.2 Performance analysis

In the previous section, performance of the Eikonal solvers are compared
based on the actual running time of the code. Because running time can
be affected by many factors, e.g. implementation or cache performance,
we measure the number of computations for a more careful performance
analysis. The most time consuming operation in the Eikonal solver is solving
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2D 3D
2562 5122 10242 20482 323 643 1283 2563

FMM 0.125 0.532 2.328 10.7 0.078 0.922 13.87 290

GMM 9.937 51.18 265.25 1217 3.687 35.79 376.68 6493

FSM 0.11 0.453 2.656 9.5 0.109 1.203 16.28 154

FIM 0.125 0.516 2.235 9.5 0.125 1.328 16.61 233

Table 5: Running time on speed example 5

Figure 7: Comparison of CPU time increasing rate

the quadratic equations. Table 6 compares the average number of the solved
quadratic equations per point on different input 3D speed examples.

FMM is a one-pass algorithm, meaning that a point is fixed with only
a single update, and thus the average number of computations is same for
all the speed examples. However, the tentative solutions on the wavefront
must be computed multiple times. Each point has six neighbors in a 3D
grid and we can assume that about half of neighbors are fixed when a point
is updated. Thus, each point is updated roughly three times on average.
GMM is also a one-pass algorithm, but each point is updated at most twice
to ensure stability, so the average number of computations is bound by about
twice that of FMM, which is six. The average number of computations is
same as the number of sweeps for FSM, and it highly depends on speed
examples. FIM also depends on the speed examples, but due to its local
operations, the average number of computations is not as big as FSM. For
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Example 1 Example 2 example 3 Example 4 Example 5

FMM 2.98 2.98 2.98 2.97 2.97

GMM 5.83 2.14 3.75 5.364 2.75

FSM 9 21 35 22 30

FIM 4.98 6.9 9.97 4.97 23.05

Table 6: Average number of solving quadratic equation per point on 2563

most speed examples, the FIM needs on average less than ten operations
per point. On a special configuration like example 5, FIM requires a large
number of operations.

Even though FMM’s average number of operations is much smaller than
that of FIM, the actual running time is much longer than FIM in all 3D
speed examples shown above. The reason is that managing a heap in FMM
is very expensive, especially for 3D. Let k1 and k2 as the cost for a quadratic
solver computation and a heap updating operation respectively, and PFMM

and PFIM are the average number of operations per point in FMM and
FIM respectively (as in table 6). Let h be the average heap size. The total
cost for FMM and FIM on the grid size N can be defined asymptotically as
follows.

CFMM = N(k1PFMM + k2PFMMlog2(h))

= Nk1PFMM(1 +
k2

k1

log2(h))

CFIM = Nk1PFIM

Hence, for FIM to outperform FMM, the following condition must hold.

Nk1PFMM(1 +
k2

k1

log2(h)) > Nk1PFIM

PFIM < PFMM(1 +
k2

k1

log2(h))

For example, empirically measured k2

k1
log2(h) for speed example 1 on

2563 grid is around 2.5, and PFMM is around 3 (Table 6). Hence, if PFIM is
less than 10 then FIM would outperform FMM. The ratio k2

k1
log2(h) depends

on several factors, i.e. size of the heap or value of elements to be updated.
For example 5, k2

k1
log2(h) goes up to around 8, so FIM will run faster than

FMM if PFIM is smaller than 27.
Table 7 summarizes the performance of the discussed Eikonal solvers

over several data categories. ‘+’ implies that the method works well on the
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category, and ‘−’ vice versa. The proposed method, FIM, runs faster than
the other methods on most cases, and GMM also works well on most cases
except the data with extremely large speed contrasts. FSM performs well
only on the dataset with a few changes of characteristic direction, making
FSM less suitable for solving general Eikonal equations. The performance
of FMM is not significantly affected by factors other than the size of the
dataset, but the method is already very expensive for 3D datasets compared
to GMM or FIM.

FMM GMM FSM FIM

Large Speed Contrasts + − + +

Large Data Size − + + +

Varying Speed Values − + − −
Char. Dir. Changes + + − +

Parallelization − + − +

Table 7: Overall performance comparison on data categories

5 Conclusion and Future Work

In this paper we propose a novel Eikonal solver based on the selective itera-
tive method. The method employs the narrow band approach to keep track
of the points to be updated, and iteratively updates the solutions until they
converge. Instead of using an expensive sorting data structure to keep the
causality, the proposed method uses a simple list to store active points and
updates all of them at the same time until they converge. The points in the
list can be removed from or added to the list based on the convergence mea-
sure. The method is simple to implement and runs faster than the existing
solvers on general Eikonal equations. The method is also easily portable to
parallel architectures, e.g. graphics processors or cluster systems, which is
difficult or not available on the existing methods.

The development of the algorithm is initially motivated by the effort of
implementing an efficient Eikonal solver on the graphics hardware, so the
GPU implementation of the proposed algorithm is a topic for an upcoming
paper by the authors. Developing a fast iterative method for anisotropic
Hamilton-Jacobi PDEs would also be another useful extension of this work.
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