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A VISCOSITY SOLUTIONS APPROACH TO SHAPE-FROM-SHADING*

ELISABETH ROUY? AND AGNIS TOURINg"

Abstract. The problem of recovering a Lambertian surface from a single two-dimensional image may
be written as a first-order nonlinear equation which presents the disadvantage of having several continuous
and even smooth solutions. A new approach based on Hamilton-Jacobi-Bellman equations and viscosity
solutions theories enables one to study non-uniqueness phenomenon and thus to characterize the surface
among the various solutions.

A consistent and monotone scheme approximating the surface is constructed thanks to the dynamic
programming principle, and numerical results are presented.
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1. The shape-from-shading problem.
1.1. Introduction. The purpose of this work is the construction of an algorithm

computing the solution of some first-order Hamilton-Jacobi equation whose origins
are in image analysis and, more precisely, in shape-from-shading problems.

The shape of a surface is related to the image brightness by the Horn image
irradiance equation (see Horn [14, Chap. 10]).

Given the brightness value I(x, y) at each pixel and the reflectance map R(n)
which specifies the reflectance of a surface as a function of its orientation, the image
irradiance equation may be written

R(n(x,y))=Z(x,y).

The reflectance map depends on the reflectance properties of the surface and the
distribution of light sources. The image irradiance equation may be considered as a
nonlinear first-order equation whose unknown variable is the elevation of the shape.

Horn first solved this equation by a global method under some assumptions on
surface smoothness which provided the additional information necessary to charac-
terize the shape (see [14, Chap. 11]). He then developed another formulation of the
problem that consists in minimizing a certain composite function of either the orienta-
tion or the elevation of the surface involving a regularization term. This method yields
more efficient numerical schemes.

In the case of a single distant light source, Pentland [18]-[20] recently proposed
an algorithm that estimates shape from local variations in the image intensity by
computing the solution in the Fourier domain. The usual assumption on surface
smoothness is no longer necessary and the reflectance map is approximated by a linear
function of the partial derivatives. The algorithm gives a good estimate of the surface
for high frequencies and maybe united with a stereo treatment for low ones.

We propose here a new method that consists in solving directly the image irradiance
equation, which is a PDE with boundary data. First, we want to restrict our study to
continuous shapes. This requires the use of viscosity solutions whose theory has been
developed by Crandall and Lions [10] and many others.

The next part of this paper is dedicated to the statement of a shape-from-shading
model and its presentation in terms of the Hamilton-Jacobi equation.

* Received by the editors October 29, 1990; accepted for publication July 9, 1991.

" Ceremade, Universit6 Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France.

867

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

32
.2

06
.2

7.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



868 ELISABETH ROUY AND AGNIS TOURIN

In the following section we recall some notions of viscosity solutions and present
a uniqueness result which will allow us to characterize the shape among the solutions.
Moreover we give conditions for the existence ofboth continuous and smooth solutions.

In 3 we state the link between viscosity solutions and optimal control theories
via the dynamic programming principle. It yields a stable, consistent and monotone
numerical scheme which converges uniformly toward the viscosity solution. We solve
the discrete equations of this stationary scheme thanks to an optimal algorithm based
on its monotonicity.

Finally, we present some numerical results and propose some related shape-from-
shading problems which could be solved in a similar way.

1.2. A shape-from-shading model. In this work we concentrate on the recovery of
a Lambertian surface illuminated by a single distant light source. In this case, the
reflectance map R(n (x, y)) has a well-known and simple form.

Let f be an open subset of R2, the scalar function u defined on f the elevation
of the shape, and (a,/3, 3’) the unit vector in the illuminant direction where a,/3, 3" are

nonnegative real numbers.
In the case of a Lambertian and not self-shadowing surface illuminated by a single

distant light source, we have

I(x, y)= R(n(x, y))= n. (a, fl, 3")

a Ou/Ox + fl Ou/Oy + 3"

/1 + (Ou/Ox)2 + (Ou/Oy)2

We assume that I is a positive, Lipschitz continuous function; the above equation
may be rewritten as a first-order Hamilton-Jacobi equation:

(1) I(x)/l+lVul2-(a, fl) .Vu-3"=O /xf,

where the Hamiltonian of the problem,

H(x,p)=I(x),/l+lpl2-(,).p-% x, p2,

is Lipschitz continuous with respect to its first argument and convex continuous with
respect to its second one.

Obviously we need conditions on the boundary of the domain f for the
Hamiltonian does not depend on u. We choose here a Dirichlet type boundary condition
and more precisely we consider the following example

(2) u=0 on00,

even if everything we do adapts trivially to arbitrary boundary data.

2. Hamilton-Jacobi equations and viscosity solutions.
2.1. Definitions. We first recall the definition of viscosity solutions. This notion,

introduced first by Crandall and Lions in 10], is a notion ofweak solutions of first-order
nonlinear equations, called Hamilton-Jacobi equations.

We consider the following equation:
(3) H(x, u(x), Vu(x))=O in [l,

where f is an open subset of R" and H, the Hamiltonian, is a continuous scalar
function on

u BUC (12) (bounded, uniformly continuous on ) is a viscosity subsolution of
(3) if for all q CI(f), for all Xol local maximum of u-q,

14(Xo, U(Xo), V(xo)) <- 0
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A VISCOSITY SOLUTIONS APPROACH 869

holds, and u BUC () is a viscosity supersolution of (3) if for all C1(12), for all
Xo 12 local minimum of u ,

H(xo, U(Xo), Vq(Xo)) _-> 0

holds. Finally, u is a viscosity solution of (3) if u is a viscosity subsolution and
supersolution of (3).

Remark 1. Let u be a viscosity solution of (3). If u Cl(f), then u is a classical
solution of (3) (i.e., (3) holds at each point) and if u Wl’(12), the equation holds
almost everywhere. Conversely, if u C1(12) solves (3) then u is a viscosity solution
of (3).

2.2. A uniqueness result. We now present a stability result, in case the Hamiltonian
does not depend on u, due to Ishii [15] and which can also be found with a different
proof in Lions 16]. It states that the positive difference between a viscosity subsolution
and a viscosity supersolution is inferior to its value on the boundary. We need this
result in its uniqueness version in order to ensure the convergence of our algorithm
towards the right solution.

THEOREM 1. Let u, v BUC (12) be, respectively, viscosity sub- and supersolutions
of the following equation"

(4) H(x, V u (x)) 0 in 12 bounded open subset of n,
where H is continuous on 12 x and convex in V u. In addition we assume that

Vx, ye12, VpN", IH(x,p)-H(y,p)l<-_to(lx-yl(l +lp[))
with to continuous nondecreasing function such that to(O)= 0

holds and that there exists a strict viscosity subsolution u_ C1(12) fqC(fi) of (4) (i.e.,
such that H(x, V u_ (x)) < O, for all x 12).

Then we have

sup (u-v)+<=sup (u-v)+.

Remark 2. Let v e C(12) be defined by

u=ud-ev.
If u is a viscosity solution of (4) then v is a viscosity solution of H’(x, v, V v)= 0 in
12, where

H’(x, t, p) H(x, V_u+p e’) e-’
is a nondecreasing function with respect to t. We may then use comparison theorems
contained in Barles [2] or Lions [16] to find the same results, the partial derivative of
H’ in being equal to zero at points of maximal intensity.

COROLLARY 1. Under the assumptions of the previous theorem, there exists at most
one viscosity solution of (4) verifying u = on 012.

This result .may be applied to our case as soon as we assume that the luminous
intensity I is Lipschitz continuous, which gives the proper smoothness to the Hamil-
tonian, and lower than 1 in order to ensure the existence of the strict viscosity
subsolution. As a matter of fact, w;hen the luminous intensity is equal to 1, there does
not exist p in N2 such that

x/l +lpl2-(a, fl) p- 3,<0.

On the contrary, in case I is lower than 1, u_(x,y)=(a/7)x+(fl/7)y is a strict C
subsolution of the equation.
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870 ELISABETH ROUY AND AGNIS TOURIN

This is an optimal result for we can prove that as soon as there exists a point of
maximal intensity the solution of the equation is no longer unique. This is obvious in
the case of a purely vertical lighting: if u is a nonidentically equal to zero differentiable
solution (i.e., if ! is equal to 1 at least at one point but not identically equal to 1),
then -u is another solution, as the Hamiltonian only depends on IVul 2.

This suggests the type of supplementary information which may be used in order
to fully determine the solution: we consider the open subset l)’c l-I defined by

The equation

fl’= {x Ft/ I(x) l}.

H(x, Vu(x))=O in

u q on

has at most one viscosity solution. Therefore, if we know the value of the solution on
01)’, the shape is totally determined.

2.3. The Eikonal equation and existence results. Otherwise we need a condition
on q in order to ensure existence. We present below the "compatibility condition,"
which implies the existence of a viscosity solution, and the condition necessary for
the existence of a C solution; these were given in [16].

These results were established for the equations of the form IV ul n, where n is
a continuous function on fl, to which (1) can be easily reduced in case of purely
vertical lighting.

For oblique lightings, one may notice that a simple change of references in 3
which rotates the axis in order that the illuminant direction and the z-axes coincide,
reduces the equation to the veical case. Yet, if I is not greater than aa+ fl on the
entire set fl, the shape may not be a function in those new references. In the following,
we will consider that

I>a2+2,

which allows us to restrict the study to the veical lighting.
Then, setting

n(x) i(x2-1 ona,

the equations (1), (2) taken for a =0 reduce to

[Vu(x)[=n(x) in ,
(s)

u(x) 0 on

We shall first consider the following simple situation: let be a bounded, smooth,
and connected domain and let n e C() be a positive function except at Xo (n(xo) =0);
we are looking for the viscosity solutions of (5).

Let L be the continuous function defined on x by

L(x,y)=inf n((s)) ds/(O)=x, (To) =y,

d(t) }1 (t)a, Vt6[O, To]
dt
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A VISCOSITY SOLUTIONS APPROACH 871

PROPOSITION 1. A viscosity solution of (5) satisfying the boundary condition U(Xo)
A, where A is a given real, may be written as the value function of a particular optimal
control problem

(6) u(x) min { infyol) L(x,y),A+L(x, xo)}.
In addition, the following compatibility condition with boundary data holds:

(7) IAI <-- inf L(xo, y).
yO

Conversely, if (7) holds, the value function defined by (6) is a viscosity solution of
(5) satisfying U(Xo)= A.

PROPOSITION 2. Let u C1(1)) be a solution of (5), then we havefor all x (, either

u(x) inf L(x, y)
yO

or

u(x) inf L(x, y).
yO

In particular, if u cl(fi) is a solution of (5) then

lu(xo)l inf L(x, Xo).
xO

We conclude by mentioning that the previous results may be extended to the case
where n(x)>O in -{xl,..., x,} and n(xi)=0 for i= 1 to rn, where x,..., x,, are
rn distinct points of :

(i) In this case, the compatibility condition is

and

[U(Xi)[ __--< inf L(y, xi) Vi {1 m}
yO

[u(xi)- u(xj) <---- L(xi, xj) Vi, j {1 m};

(ii) If u e C(fi) is a solution of (5) then ::lioe {1... m} such that

]u (Xio) inf L(y, Xo)
yOl

and for all i{1-., m} either

or

u (xi)l inf L(y, xi)
yO

::lj 6 {1’’" m}, j # i, s.t. [u(xi)- u(xj)[ L(xi, Xj)

holds.
Note that those results may be extended to the case where n 0 on closed subsets

of .
3. Numerical allroximation. In this section we present a numerical scheme to

compute the unique viscosity solution of

lVu(x)l=n(x) in ’,
(8)

u(x) q on 01’.
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872 ELISABETH ROUY AND AGNIS TOURIN

The approach, based on the dynamic programming principle, yields monotone,
stable, and consistent schemes whose convergence was originally proved in some
situations by Crandall and Lions [11], Souganidis [21], and Barles and Souganidis [5].

As the scheme is implicit we then use a method, proposed by Osher and Rudin
[17], to deduce an explicit scheme which has the great advantage of being fast.

3.1. Optimal control theory and dynamic programming principle. It is now well
known, after the work of Lions [ 16], that in some situations a viscosity solution may
be considered as the value function of an optimal control problem. We shall use here
the formulation of u in term of value function and, more precisely, the dynamic
programming principle of Bellman, in order to construct a monotone and consistent
scheme.

Let u be the viscosity solution of (8). With the remark that

]Vu(x)[=n(x)C:sup {Vu(x) q-n(x)}=O Vx’,

u appears to be the value function of the following exit time problem: let yx be the
state of the controlled dynamical system,

2fx -q(s), s>--0,
yx(O)=x

where q, the control, belongs to

s4a,, {q:N+-N2 measurable/[q(s)[<__ 1, s=>0}.

The cost function is defined by

J(x, q()) n(y,(s)) ds+ (p(y( T)),

where T denotes the first exit time of f’, i.e.,

T min { => 0/yx(t) 01’}.

Finally the value function is

u(x)= inf J(x, q( )).
q( )e S4ad

Note that u is well defined because it always exists a control such that the trajectory
y exits from fF in a finite time.

The dynamic programming principle allows us to assert that, for each z-> 0,

(9) u(x)= inf n(yx(S)) ds+o(yx(T))llr<=,(T)+u(y(z))r>,(T)
q( )e

where is defined as follows:

1 if teA,
Let A be a subset of N; for all e N, A(t)

0 if A.

3.2. Numerical scheme. We now present an explicit scheme which approximates
the viscosity solution of (8) by discretizing (9) (see for more details Capuzzo-Dolcetta
[6], Falcone [13], and Alziary de Roquefort [1]).

We shall use the formulation of u as a value function in order to approximate
the nonlinear term.
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A VISCOSITY SOLUTIONS APPROACH 873

Let [l be the rectangular domain ]0, X[ x ]0, Y[ of 2. Given the mesh sizes Ax,
Ay > 0, the value of our numerical approximation of the solution at (xi, yj)- (iAx, jAy)
(i= 0... N, j 0.. M, with N- XlAx, M Y/Ay) will be denoted by U0; Ni will
be the value of n at (xi, y).

Finally we define the following index sets"

Q’ {( i, j) E [2/ (Xi, y3) E 12’},

oQ’= {(i,j)e N2/(x,, y)e

t {(i,j) eN2/ (Xi, yj) e ,}.
We shall compute u in fl thanks to the dynamic programming principle choosing

,r=At.
If x E 0fl’, the first exit time is zero and we have

u(x)=(x).

If x fl’, we may choose At sufficiently small (At < min (Ax, Ay)) for yx(s) to stay
inside fl’ as s [0, At] because the speed state is limited by 1.

Then we have for all lattice points in 1)’

{Iot }inf n(yx(s)) ds+u(yx(At))u(x)
(am

i.e., making the usual approximations,

u(x-Atq)-u(x)
sup -n(x) =0.
[ql__<l -At

With the choice of At AxAy/x/AxE+Ay2, a convex linear approximation for
u(x-Atq) yields the following first-order finite difference scheme"

For all approximations U, we state" for all (i,j) Q’,

D+ U Ui+ Uij
Ax

D- Uo AX

D-U Ay

Let g (g))(i,))o’ be a vector of functions from N4 to defined by

V(i,j)e Q’, V(a, b, c, d)eN4,

g(a, b, c, d)= x/max (a/, b-)2+ max (c/, d-)-N0.

Then, a numerical approximation U of (8) will satisfy

I Uo=o(x,, y) V(i,j)eoQ’,
(10)

tg D- U, D+ U, D-; U, D;U)=0 V i, j e Q’.

Remark 3. The theoretical accuracy of this kind of monotone and consistent
scheme is proportional to the square root of At, even if in practice we observe a
first-order accuracy of order At.
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874 ELISABETH ROUY AND AGNIS TOURIN

Remark 4. In order that the convergence be monotonically increasing, the
algorithm must start with a subsolution verifying the proper boundary conditions.

To prove the convergence of the solutions of the discrete equation (10) toward
the viscosity solution of (8) as the mesh sizes go to zero, we shall use arguments
contained in Barles and Souganidis [5] and, more precisely, the following result, which
we shall adapt to our case.

Barles and Souganidis [5] consider any approximation schemes of the form

S(p,x, uP(x), uP)=0 in ,
where S’E+xx B()- E, where B() is the space of bounded functions defined
on . The authors prove that as long as these schemes are monotone, stable, and
consistent with equation (3), they converge to the solution of this equation, provided
that the problem admits a comparison principle.

For this purpose, they define the functions _u and as follows"

Vx , _u(x) lim inf u p (y), t(x) lim sup up (y).
pO p-O
y->x y->x

It is then proved in [5] that _u and t are, respectively, the lower semicontinuous
viscosity supersolution and the upper semicontinuous viscosity subsolution of (3) on

and use the comparison result to conclude that _u u.
We shall here consider the simple case in which n > 0 on ’= -{Xo}, where

Xo and n(Xo) 0. This proof can be extended to more general cases as Propositions
1 and 2.

A discretization p will represent a pair (Ax, Ay) of space discretization steps such
that Xo be a point of the mesh, and p--> 0 will mean v/Ax2+ Ay2 0.

In our case, u p is a function defined on Ap {(xi, Ys), i=0- N,j=O. M}f31
by uP(xi, ys)= Uo; therefore we define _u and fi as follows: for all x in ,

_u(x) lim inf inf up(y)
1-)0 0<p<’q yB(x,

and

t(x) lim sup sup up (y).
/--)0 0<p<’q yB(x, /)NAp

The scheme is monotone in the sense given in [5], i.e., if U-> V then for all
(i, j) Q’ and for all we have

( t- Ui-lj Ui+lj- t- Uij-1 Uo+l- t)go Ax Ax Ay Ay

t- V/_lj V/+u-t t- Vij_ Vij+ )<= go Ax Ax Ay --y
The scheme is stable in the sense that for all p > 0, u p exists and has a bound

independent of p. The existence of up and of a superior bound independent of p is
obvious considering the definition and the monotonicity of g. Moreover, up is bounded
below, for up admits no local minimum in ’. Indeed, if U0 (for (i, j) Q’) is lower
than its neighbors, then

+Uo)=-No<O.go(D- Up, D+ Up, D-; Up, Wy
Then up has its minima on Off’ and is bounded below by a constant independent of
p, which is the minimum of q on 0’.
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A VISCOSITY SOLUTIONS APPROACH 875

The scheme is consistent with the equation

H(x, Vu)=O in

as, for each (i, j) Q’,

gij(a, a, b, b)= /a2+ b2- n(xi, for a,bE.

Then, we can prove as in [5] that _u and t7 are, respectively, the super- and
subsolution of IV u n in fY and that _u -< <- t7 on 0fY.

THEOREM 2. With the above definitions, u_ and thus the scheme defined by (10)
converges toward the viscosity solution of (8).

We shall need the following lemmas, whose proofs do not present any difficulty
and will not be displayed here.

LEMMA 1. We have the following propositions"
(i) _u and are continuous in
(ii) _u is continuous on 12,
(iii) on 012’.
LEMMA 2. Let Xl f’; if xl is a local minimum of u_ on f then _U(Xl)= q(Xl).
As t7 is continuous in fY and upper semicontinuous on f, its lower semicontinuous

envelope tT, is continuous on 12 and is a viscosity subsolution of (8) in fY as well as
tT. Thus, as tT, <-t7 = on 0fY, the comparison theorem implies that 3,_-< u on 12.
Finally, it yields

_u=<ti,-<_ti<_-u on 12.

We shall now prove that _u is greater than u on f. We shall consider the following
two cases:

q(Xo)=>O and q(Xo)<0.

In the first case, as uP has no minimum outside 012’ and as uP= 0 on 012, uP_> 0
on Ap and thus _u => 0 on 12. Then _u 0 on 012 and, as _u is a viscosity supersolution and

0 _-< _U(Xo) <= q(Xo) --< inf L(xo, y),
yaf

the compatibility condition holds and we have

( train inf L(x, y), u_ (xo) + L(x, xo) <-- u_ (x) in 12
yO

thanks to’Proposition 1 and Theorem 1.
If Xo is not a local minimum of _u, we have:

Vr/>O, ::lxeB(xo, rl)/u_(x)<u_(xo)

/r/> 0, ::ix B(xo, 7)/ inf L(x, y) < _U(Xo)
/yO

:=>_U(Xo) inf L(xo, y)
yO

for x infyoa L(x, y) is a continuous function. Now

q(Xo) --< inf L(xo, y) and _U(Xo) _-< q(Xo);
y Of

then _U(Xo)= O(Xo) and _u _-> u on thanks to Theorem 1.
If Xo is a local minimum of _u then Lemma 2 states that _U(Xo) O(Xo) and we have

the same conclusion.
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876 ELISABETH ROUY AND AGNlS TOURIN

Finally, in case p(Xo)< 0, up has a minimum at Xo and _U(Xo)= q(Xo). Then the
proof will be completed if _u _>-0 on 0f.

Let Xl be the minimum of _u on 012; as 0 -< u_(xl)-u_(xo)<=infyo, L(xo, y), the
compatibility condition is satisfied and we have

min(g(Xl)+ inf L(x,y), p(Xo)+L(x, xo)) <- u_ (x) in 12.
yO

Then again, either xl is a local minimum of _u on 12 and _/-/(Xl) 0 thanks to Lemma
2 or for all "0 > O, :Ix B(xl, r/)/_u(x) < _U(Xl), i.e.,_

(Xo) "-[- Z(x, Xo) < _/./(Xl).

And, as L is continuous,

L(xl, Xo) < _U(Xl) _U(Xo) -< inf L(xo, y)
yO

L(x,, Xo) inf L(xo, y) _u(x,)- _U(Xo)

=:>0 _-> _u(x) _U(Xo) + inf L(xo, y) _--> 0
yo

_u(x) =0.

Thus, _u->_ u on 012.

3.3. Numerical algorithm. We shall now present an algorithm which computes an
approximation U solution of (10) for a given (Ax, Ay). This algorithm, proposed by
Osher and Rudin in [17], is efficient in the sense that it is explicit and that it requires
very few iterations to converge.

Let G be the operator defined on the space of all U Uo)(i,j)o by: for all (i, j) Q’,

G( U)o go(D- Uo, D+ Uo, D-; Uo, D; Uo).
U is an approximation ofthe viscosity solution of (8) for the discretization (Ax, Ay)

if G(U)=0 and Uo=p(xi, ys) for (i,j)oQ’.
Let us first remark the following statements.
PROPOSITION 3. For all i, j) Q’, we have"
(i) Uo-> G(U)o is a continuous nondecreasing function;
(ii) For all (k, 1) (i,j), Ukl-> G(U)o is a continuous nonincreasing function;
(iii) limu,j_+ G(U)o +c andfor the choice Uo min Ui+s, U-lS, Uo+ Uo-l),

we have G(U)o No < O.
Therefore, if U is given at each point (k, 1) # (i, j), it is possible to find e such

that for Uo t, we have G(U)o O.
Then, the algorithm will be the following:
(i) Stepn 0:choose U o oUij)(i,j)O such that Uij-’qg(xi, Yj) for all (i,j)oQ’

and G( U) _-< 0.
(ii) Step n+l" choose (i,j)Q’, set V=sup{V=(Vkl)(k,I)O for all (k, 1)(i,j),

[n+lVkl=Ukland G(V)0=0} Set ..0 ="Remark 5. Note that step (ii) has to be completed an infinite number of times at
each point of Q’ to obtain the convergence toward the solution.

THEOREM 3. This algorithm converges toward a solution of (10) for the discretization
(Ax, Ay) as n .

Indeed (U"), is nondecreasing and, as for all n, G( U") _-< 0, Proposition 3
implies that (U"), is bounded and thus converges. Let U be its limit.

For all (i,j) in oQ’, U(i,j) q(x, y). Furthermore, for all (i,j) in Q’, V- G( V)i
is continuous and, as (U"), converges, (G(U")0), converges as n-. Now, as
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A VISCOSITY SOLUTIONS APPROACH 877

each time the second step of the algorithm is completed in (i, j) G(Un) 0 0, then
zero is the limit of a subsequence of (G( Un)o)n. Thus G( U)ij 0 and the proof is
completed.

In our case, the value of Vj can be found explicitly and exactly before any
numerical computation. Indeed, it is easy to determine the roots (a*, b*, c*, d*) of
the equation

/max (a+, b-)2 + max (c+, d-)2 C,
where (a, b, , d) R4 and C is a positive constant. Then, setting

a*= V U"-l
Ax

i+ lj Vii
Ax

c,= Vo- U-
Ay

d*= U+,- V/
Ay

we compute easily the largest V0 verifying the above equalities for all the possible roots.
The simplest way to find a solution of (10) would have been to look for the fixed

points of

U U- A tG( U)
by using the following monotone, consistent, and explicit scheme"

[]’n+l(11) ---o =Uo-AtG(U)o, V(i,j)Q’, Vn6,
but that method would have been much slower than our algorithm.

Choosing U as in (i), this algorithm is also monotonically increasing. Capuzzo-
Dolcetta and Falcone (see [12], [13], and [7]) proposed a way to speed up this kind
of scheme that consists in choosing, at step n + 1, the largest approximation of the
form A Un+ + (1 3,) U such that G(U) -<_ O, where Un+ is yielded by (11) and with
A_->I.

This increases the convergence speed of the scheme (11), but is not very well
adapted to our case for which it reduces only by half the number of iterations, since
A remains close to 1 in order that G(U)0 may be lower than zero around the points
at which n 0.

Roughly speaking, the method proposed in [17] is twenty times faster than (11)
and corresponds, in the above algorithm, to the choice of a A which depends on the
current point (i, j), and thus does not present the previous disadvantage due to the
nonuniform speed on Q’ observed in (11).

4. Results and perspectives.
4.1. Numerical results. We tested first our algorithm on basic uniformly continuous

shapes (parabola, sinusoid, pyramid, and other simple analytic three-dimensional
shapes) with both high and low gradients illuminated by purely vertical lighting.

For each example we give the grid size; the L-error e, the number of iterations
required for the convergence n, the luminous intensity I on f [0, 1] [0, 1], and the
boundary condition on

The reader may notice a first-order accuracy in the L norm and the efficiency of
the method as far as the number of iterations is concerned compared to the usual
algorithms like the one defined by (11).
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878 ELISABETH ROUY AND AGNIS TOURIN

Let us remark that the greatest loss of accuracy is observed near the boundary of
12’. For instance, the reconstructed positive parabola (Fig. 1) presents a jump at its
top where the elevation has been imposed, whereas in the negative one (Fig. 2), the
same phenomenon may be noticed at the corners of the square 12. The size of the
jumps, which are concentrated on a single mesh around the boundary, tends to decrease
as the discretization goes to zero (see Fig. 7). A specific post-treatment may be applied
in order to suppress those peaks.

This algorithm may be improved by using a second-order essentially nonoscillatory
correction as in 17]: tests performed on one-dimensional images yielded faster conver-
gence and more accurate results; besides, this correction is particularly efficient at
getting rid of the jumps described above.

Moreover, a continuous and nondifferentiable shape corresponding to a Lipschitz
continuous intensity may also be recovered with a first-order accuracy. Figure 3 displays

1.00

0.67

0.33

o.oo <UT/I I I I FT"AM I I1
,.00

,.00

’0.67 //,/_
Y 0.33

0 .00

FIG. 1. 21 x 21 points, e 2.9 x 10-2, n 27.

I---
41+ (16y(1- y)(1- 2x))2 + (16x(1- x)(1- 2y))2’

Z

0.06

1001269511
oO Ooo<  ooo

0.67. /0.67

y 0.33 X

0.00 0.00

FIG. 2. 21 x21 points, e =6.9x 10-z, n 19. I as in Fig. 1" u(1/2,1/2) =-1.

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

32
.2

06
.2

7.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



A VISCOSITY SOLUTIONS APPROACH 879

0.966

0.644

0.322

0.000
1.00

Y
0.33

X
0.33

FIG. 3. 21 x 21 points, e 1.1 x 10-2, n 10. I 1/x/.

1.00

a regular pyramid that corresponds to the data of a constant intensity on the whole
space and no additional information. Figure 4 represents the shape reconstructed from
the intensity of a parabola with a given intermediate elevation at the point where I 1.

We tested the robustness of the algorithm on the parabola and the pyramid by
perturbing the luminous intensity after having detected the points where the elevation
has to be given. We added a uniform noise on I-itdo, o] to I and then truncated the
obtained value so that the luminous intensity stays in ]0, 1].

Results are given in Figs. 5 and 6. The number of iterations and the smoothness
of the shapes are affected, whereas the accuracy remains of order Ax.

Finally, when the information about the elevation at the singular points are not
available, the results of 2.3 may be used in order to recover directly all the C shapes.

Let us begin with the simple case when {I 1} reduces to a single point Xo. Then,
as we saw in 2.3, there exist at most two C solutions which are in fact the maximum
and the minimum solutions. We can compute easily the shape which present a maximum
by choosing "large near Xo" initial U. This gives thes the value of infyoa L(xo, y).

Z
0.778

0.519

0.259

0.0,{.u00 1.00

0.00 0.00

FIG. 4. 21 x21 points, e =4.6x 10-2, n 14. I as in Fig. 1" u(1/2 1/2)- 47
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1.00

0.67

0.33

o.oo <///77//M /A,/X \A2 \\\\>- 1.oo.oo //// 7IV_./ V\\ \\\ \ \
\ o.6 

Y 0.30.33

0.00 0.00

FaG 5. Uniform noise on I: 10%, e 3.1 x 10-2, n =43. I and u(1/2, 1/2) as in Fig. 1.

0.957

0.638

0.319

0.000
1.00

0.67

0.00 0.00

FaG. 6. Uniform noise on I: 10%, e 1.2 10-2, n 14. I as in Fig. 3.

Then, we compute the other regular shape by imposing the Dirichlet boundary condition
U(Xo)---infy0a L(xo, y).

When {I 1} consists of several points, more combinations are possible (more C
solutions can exist) and, as seen in 2.3, they correspond to "extremal" elevations at
those points. We compute first the maximal solution and deduce from the result the
values of L(xi, x) and infyoa L(xi, y) for all (i,j). Then, we construct the other shapes,
taking all the combinations of Dirichlet boundary conditions and selecting the smooth
results. Figures 7 and 8 present two C shapes obtained with this method. Actually
there exist four regular surfaces corresponding to the same intensity, the two others
being the opposite shapes of the ones displayed here.

Actually, we did not try to reconstruct any shape thanks to the change of references
proposed in 2.3. Using the method displayed in 3, we can build an algorithm that
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1.00

0.33

I--

0.33 X
0.67

0.00 0.00

FIG 7. 101 x 101 points, e 2.6 x 10-2, n 255.

x/1 + (27r sin (2ry) cos (2’rrx))2 + (2rr sin (27rx) cos (2"try))2’

u(,1/4)= u(1/4,1/4)= l, u(1/4,)=u(,k)=-l, u(,)=O.

1.00

approximates (1), (2) in oblique cases with no restriction on I (see [17]). This has
been done in one dimension .and the results are as satisfactory as in purely vertical
lighting. Figure 9 is an example in two dimensions obtained by a slightly different
scheme which requires less preliminary computation but which is far slower.

4.2. Conclusion. We have presented here the simplest case in order to make the
results as clear as possible. Without changing anything, we can adapt our results to
close cases.

For example, as mentioned above, the same results may be used for recovering a
surface illuminated from one side in such a way that I remains greater than x/a 2 + fiE.
The same remark can be done in case the illumination is no more punctual but
considered as a uniform distribution of distant sources on a semisphere S. Indeed, the
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2.00

1.33

0.67

0.00
1.0 1.00

0.67

0.33 0.33

0.67

0.000.00

FIG. 8. 101 101 points, n 256. I as in Fig. 7, maximal solution" u(1/4,1/4)= u(1/4,1/4)= u(k, u(,k 1,
,(1/2, 1/2) 2.

image irradiance equation is written

[s ((Ou/Ox) w, +(Ou/Oy) w2+w3)dtx(w)
I(x,y)=’

4,1+lVul
And thus we have

I(x, y)
()1" (Ou/Ox) --1

t- ()2 (Ou/Oy) --4i + Iv
where

th to dlx to i= 1,2,3,
s

which appears to be the same case as before if we renormalize to.

In case the distribution of light sources is not uniform, it seems that the maximum
principle still holds and therefore we can prove a uniqueness result as long as the
support of the luminous source is .connected.
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FIG. 9. 21 X 21 points, e 5.9 x 10-2, n 145

2 3x/
=-4’ -43’

8y(1 y)(1 2x) + 8x(1 x)(1 2y) + 3x/
I=

,,// + (4y(1- y)(1- 2x))2 + (4x(1- x)(1- 2y))2’

U
625

We intended to study in further publications some variants of the model described
above: in particular, Neumann type boundary conditions instead of Dirichlet ones,
shapes presenting shadow areas, discontinuities of I, and light sources at a finite
distance.
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