Flow Simulation

Theory
Method
Phase 1
Phase 2
Asymmetric
Analysis

Blade Element Propeller Theory

Consider a cross-sectional area of a blade, shown in grey. Air particles passing through the top surface travels faster than those at the bottom.  By Bernoulli’s Principle, the difference in air velocities creates a pressure differential, giving rise to a lift force. The air particles at the bottom are deflected downwards, generating frictional drag on the airfoil. 

 

 

We ideally want to maximise lift and minimise drag, so that we can obtain a large thrust and reduce the resistive torque required to rotate the propeller. 

 

Computational Fluid Dynamics

Summing up all blade elements to determine thrust and resistive torque is usually impractical, so a CFD analysis is usually performed with a software like SOLIDWORKS Flow Simulation. 

As a brief summary, SOLIDWORKS Flow Simulation approximates Reynolds-Averaged Navier-Stokes (RANS) equations using the Finite Volume Method (FVM) on a rectangular (parallelepiped) computational mesh. The RANS equations are time-averaged equations of motion for fluid flow. 

 

Sources

John D. Anderson, Jr. (2017). Fundamentals of Aerodynamics Sixth Edition. McGraw-Hill Education.

Blade Element Propeller Theory | Aerodynamics for Students. (n.d.). http://www.aerodynamics4students.com/propulsion/blade-element-propeller-theory.php

Sobachkin A., Dumnov G., Sobachkin A. (2014). Numerical Basis of CAD-Embedded CFD White Paper. https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded_cfd_whitepaper.pdf

To calculate efficiency, we define these parameters:

  • Thrust (N) acting on all blade surfaces
  • Axial speed (m/s) of air exiting a circular sectional area right above the fan
  • Resistive torque (N m) of the motor to rotate the propeller
  • Rotational speed of a defined circular rotating region of the fan (RPM)
    • Standardised at 7000 RPM
  • Efficiency (%)

 

 

Sources

M. Jenkins, “How to Optimize a Propeller Design,” SimScale, Jun. 01, 2023. [Online]. Available: https://www.simscale.com/blog/how-to-optimize-propeller-design/

Fan 3B 35mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.203 9.15 0.0100 7000 25.38

 

Fan 3B 25mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.208 9.17 0.00746 7000 34.9

 

Fan 6B 35mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.923 12.5 0.0315 7000 50.0

 

Toy Fan Propeller Model

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.049 4.16 0.000902 7000 30.8

 

Fan 2B 25mm Curved

Dimensions | z: 261mm   |   x: 103mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.0891 5.24 0.00148 7000 43.0

 

Fan 3B 25mm Curved

Dimensions | z: 345mm   |   x: 114mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.105 5.48 0.00163 7000 48.20

 

Fan 4B 25mm Curved

Dimensions | z: 253mm   |   x: 110mm

 Thrust (N)   Velocity (m/s)   Torque (N m)   Rotation (RPM)   Efficiency (%) 
0.127 5.92 0.00210 7000 48.8

Fan 2B V1

           

Dimensions | z: 309mm   |   x: 111m

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.112 5.98 0.00195 7000 46.85

 

Fan 3B V1

           

Dimensions | z: 177mm   |   x: 106mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.155 6.49 0.00264 7000 51.98

 

Fan 4B V1

           

Dimensions | z: 258mm   |   x: 94mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.183 7.12 0.00333 7000 53.38

 

Fan 5B V1

          

Dimensions | z: 257mm   |   x: 102mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.200 7.37 0.00380 7000 52.92

 

Fan 4B V2

           

Dimensions | z: 255mm   |   x: 93mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.140 6.24 0.00203 7000 58.71

 

Fan 4B V3A

           

Dimensions | z: 242mm   |   x: 96mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.176 6.50 0.00241 7000 64.76
0.181 6.67 0.00250 7000 65.88

* Made minor modifications for the 2nd row.

 

Fan 3B V3

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.139 6.01 0.00184 7000 61.9

 

Fan 5B V3

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.168 6.52 0.00235 7000 63.6

 

Fan 4B V3B

           

Dimensions | z: 234mm   |   x: 87mm

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.1398 5.666 0.001669 7000 64.74

 

Fan 4B V3 (Further Testing)

We reduced the trailing edge pitch and found that efficiency drops if the blade curvature becomes too gentle.

Thrust (N) Velocity (m/s) Torque (N m) Rotation (RPM) Efficiency (%)
0.120 5.48 0.00166 7000 54.04

Fan 4B V3A Asym

Extend Mid Angle ("long boi")

           

Thrust (N)

Velocity (m/s)

Torque (N m)

Rotation (RPM)

Efficiency (%)

0.145

6.06

0.00193

7000

62.1

 

Extend Small Angle

           

Thrust (N)

Velocity (m/s)

Torque (N m)

Rotation (RPM)

Efficiency (%)

0.142

5.99

0.00199

7000

58.3

 

Extend Large Angle

           

Thrust (N)

Velocity (m/s)

Torque (N m)

Rotation (RPM)

Efficiency (%)

0.134

5.82

0.00187

7000

56.7

 

Optimising Propeller Efficiency

All Phase 1 propellers did not achieve efficiencies higher than 50%.

Phase 2 propellers and more recent designs usually have efficiencies larger than 50%.

We achieve a record efficiency of 65.88%, close to the industry standard of 67 to 72% for axial flow fans. 

 

Optimising Number of Blades

Across three blade designs, the highest efficiencies are achieved at 4 blades

 

Optimising Pitch Angle

We varied the pitch angle of the blade end from 9 to 14 degrees, as shown below in red.

 

Pitch Angle (°)

Thrust (N)

Velocity (m/s)

Torque (N m)

Efficiency (%)

9

0.134

5.63

0.00180

57.18

10.8

0.176

6.50

0.00241

64.76

12

0.178

6.58

0.00253

63.15

14

0.203

7.15

0.00310

63.87

 

We observed that both thrust and torque increases at different rates with increasing pitch angle.

As pitch angle increases after an optimal point, torque increases at a faster rate than thrust, resulting in an overall decrease in efficiency.

A pitch angle of 11 degrees is the most ideal.

 

Effect of Blade Curvature

 

Colour

Thrust (N)

Velocity (m/s)

Torque (N m)

Rotation (RPM)

Efficiency (%)

Red

0.176

6.50

0.00241

7000

64.76

Blue

0.140

5.67

0.00170

7000

64.74

 

Two different blade shapes were found to have similar theoretical efficiencies but different air velocities.

We tested both propellers and found that actual efficiencies and air velocities are lower.

This may be attributed to the rough surface finish of 3D printed parts which adversely affected the air flow.