Topic 10: Price Discrimination

EC 3322
Semester I - 2008/2009

Introduction

- Price discrimination \rightarrow the use of non-uniform pricing to max. profit:
- Charging consumers different prices for the same product.
- Charging a consumer a price which varies with the quantity bought.
- Not all price differences reflect price discrimination \rightarrow cost differential of supplying the products to different group of consumers.
- Examples:
- Magazines, movie or museums tickets sold at normal price and concession price for students and senior citizens.
- The use of rebate coupons.
- Prescription drugs, music CDs, or movie DVDs are cheaper in some countries. Gasoline price in Singapore and in Johor.
- Business and first class travel vs. economy class.

Introduction ...

- Why price discrimination is profitable? \rightarrow because consumers have different valuations (willingness-to-pay/ WTP) \rightarrow those with higher valuations pay more \rightarrow in contrast to the uniform pricing.
- Conditions for successful price discrimination policy:
- The firm adopting the policy must have some market power (able to set $\mathrm{p}>\mathrm{MC}$).
- The firm must be able to distinguish consumers on the basis of their WTP \rightarrow this WTP must vary across consumers and (or) units purchased.
- The firm must be able to prevent arbitrage or resale from consumers who pay at a lower price to consumers who are willing to pay a higher price.

Price Discrimination

- There are three different types of price discrimination:
\square First-degree price discrimination (or personalized pricing) \rightarrow Each consumer pays a different price depending on the WTP \rightarrow consumers are left with no consumer surplus.
- Second-degree price discrimination (or menu pricing) \rightarrow the price per unit depends on the number of units purchased \rightarrow the firm is not able to capture all consumer surplus.
- Third-degree price discrimination (group pricing) \rightarrow each group of consumers faces its own price per unit \rightarrow the firm is not able to capture all consumer surplus.

Price Discrimination ...

- Specific examples of price discrimination strategies:
- Two-Part Tariff \rightarrow : The firm charges a lump-sum fee (the first part of the tariff) for the right to participate in the transaction, and a price per unit of product (the second part) \rightarrow e.g. amusement/ theme parks, cover charge in clubs.
- Quantity Discount \rightarrow price discount for large purchases \rightarrow e.g. buy 2 get 1 free scheme.
- Tie-in-Sale \rightarrow a consumer can buy one product only if another product is also bought \rightarrow e.g. coffee machine that requires a special coffee capsule from the company.
- Quality Discrimination \rightarrow selling different qualities to different type of consumers.

First Degree Price Discrimination

- A monopolist can charge maximum price that each consumer is willing to pay \rightarrow extracts all consumer surplus.
- Profit $=$ total surplus \rightarrow first-degree price discrimination is efficient.

First Degree Price Discrimination ...

- First-degree price discrimination is highly profitable but requires detailed information and ability to avoid arbitrage.
- It leads to the efficient choice of output.
- But there are other pricing schemes that will achieve the same outcome:
- Non-Linear Prices (e.g. two-part pricing, in which a lumpsum fee (membership fee) and a per unit price are charged.
- Block Pricing \rightarrow bundle total charge and quantity in a package.

Two-Part Pricing

- Consider the following example \rightarrow St. James Power Station Club \rightarrow serves two types of customers; teenagers (t) and young professionals (p).
- Young professionals \rightarrow The demand for entry plus Q_{y} drinks is $P=V_{y}$ $-Q_{y}$
- Teenagers \rightarrow The demand for entry plus Q_{t} drinks is $P=V_{t}-Q_{t}$
- There are equal numbers of each type.
- Assume that $V_{y}>V_{t} \rightarrow$ young professionals are willing to pay more than teenagers.
- Cost of operation of the club: $C(Q)=F+d Q$
- The demand and costs are all expressed in daily units

Two-Part Pricing ...

- Suppose that the club owner applies "traditional" linear pricing \rightarrow free entry (no cover charge) and a set price for drinks.
- The aggregate demand is $Q_{U}=Q_{y}+Q_{t}=\left(V_{y}+V_{t}\right)-2 P_{U}$
- The inverse demand is $P_{U}=\left(V_{y}+V_{t}\right) / 2-Q_{U} / 2$
- $\mathrm{MR} \rightarrow \mathrm{MR}=\left(V_{y}+V_{t}\right) / 2-Q_{U}$
- $\mathrm{MR}=\mathrm{MC}, \mathrm{MC}=c$ and solve for Q to give $Q_{U}=\left(V_{y}+V_{t}\right) / 2-c$
- Substitute into the aggregate demand to give the equilibrium price P_{U} $=\left(V_{y}+V_{t}\right) / 4+c / 2$
- Each young professional buys $Q_{y}=\left(3 V_{y}-V_{t}\right) / 4-c / 2$ drinks.
- Each teenager buys $Q_{y}=\left(3 V_{y}-V_{t}\right) / 4-c / 2$ drinks.
- Profit from each pair of the young pro. and teenager is $\pi_{U}=\left(V_{y}+V_{t}\right.$ $-2 c)^{2}$

Two-Part Pricing ...

This example can be illustrated as follows (the demand from each customer):

Linear pricing leaves each type of consumer with consumer surplus

Two-Part Pricing .

- If there are \underline{n} customers of each type per night,

$$
\Pi_{U}=n \pi_{U}-F=n\left(P_{U}-c\right) Q_{U}-F=\frac{n}{8}\left(V_{y}+V_{t}-2 c\right)^{2}-F
$$

- For example if $\mathbf{V}_{\mathbf{y}}=\$ 16, \mathbf{V}_{\mathbf{t}}=\$ 12, \mathrm{c}=\$ 4, \mathrm{n}_{\mathrm{y}}=100$, and $\mathbf{n}_{\mathrm{t}}=100$ then,

$$
\begin{aligned}
& P_{U}=\frac{\left(V_{y}+V_{t}\right)}{4}+\frac{c}{2}=\$ 9 \quad Q_{U}=\frac{\left(V_{y}+V_{t}\right)}{2}-c=10 \text { drinks } \\
& Q_{y}=\frac{\left(3 V_{y}-V_{t}\right)}{4}-\frac{c}{2}=7 \text { drinks } Q_{t}=\frac{\left(3 V_{t}-V_{y}\right)}{4}-\frac{c}{2}=3 \text { drinks } \\
& \pi_{U}=\frac{1}{8}\left(V_{y}+V_{t}-2 c\right)^{2}=\$ 50 \\
& \Pi_{U}=\frac{n}{8}\left(V_{y}+V_{t}-2 c\right)^{2}-F=\$ 5000-F \text { each night }
\end{aligned}
$$

Two-Part Pricing ...

- The club owner can actually do better than just setting a uniform price.
- Consumer surplus at the uniform linear price:

$$
\begin{aligned}
& C S_{y}^{U}=\frac{1}{2}\left(V_{y}-P_{U}\right) Q_{y}=\frac{1}{2}\left(Q_{y}\right)^{2}=\frac{1}{2}\left(\frac{3 V_{y}-V_{t}}{4}-\frac{c}{2}\right)^{2} \text { for young pro. } \\
& C S_{t}^{U}=\frac{1}{2}\left(V_{t}-P_{U}\right) Q_{t}=\frac{1}{2}\left(Q_{y}\right)^{2}=\frac{1}{2}\left(\frac{3 V_{t}-V_{y}}{4}-\frac{c}{2}\right)^{2} \text { for teenager } \\
& \qquad C S_{y}^{U}=\$ 24.5 \text { for young pro. } \\
& C S_{t}^{U}=\$ 4.5 \text { for teenager. }
\end{aligned}
$$

- These CS represents the surplus that the monopolist fails to extract. The firm can do better by setting a two-part tariff.

Two-Part Pricing ...

- Charge the young professionals a cover charge (E_{y}) equals to $\mathrm{CS}_{\mathrm{y}}^{\mathrm{U}}$ and teenagers a cover charge $\left(\mathbf{E}_{\mathrm{t}}\right)$ equals to $\mathbf{C S}_{\mathbf{t}}{ }^{\mathbf{U}} \boldsymbol{\rightarrow}$ how to implement? \rightarrow e.g. check ID on the front door.
$E_{y}=\frac{1}{2}\left(\frac{3 V_{y}-V_{t}}{4}-\frac{c}{2}\right)^{2}$ for young pro. \& $E_{t}=\frac{1}{2}\left(\frac{3 V_{t}-V_{y}}{4}-\frac{c}{2}\right)^{2}$ for teenager
- Also, continue to charge the uniform pricing \mathbf{P}_{U} per drink.
- In our example: $\mathrm{E}_{\mathrm{y}}=\$ 24.5 ; \mathrm{E}_{\mathrm{t}}=\$ 4.5$ and $\mathbf{P}_{\mathbf{u}}=\$ 9$. Paying cover charge reduce the customers' surplus to zero but does not make it negative.
- This pricing will increase profit by $\mathrm{Ey}=\$ 24.5$ per young professional and $\mathrm{E}_{\mathrm{t}}=\$ 4.5$ per teenager in addition to;
$Q_{y}\left(P_{U}-c\right)=7(\$ 9-\$ 4)=\$ 35$

$$
\begin{aligned}
& \Pi=n(\underbrace{\left(\$ 35+E_{y}\right)}_{\pi_{y}}+\underbrace{\left(\$ 15+E_{y}\right)}_{\pi_{t}})-F \\
& \Pi=100(\$ 59.5+\$ 19.5)=\$ 7900-F
\end{aligned}
$$

Two-Part Pricing ...

- The club can do even better by:
- Reduce the price per drink further below $\$ 9 \rightarrow$ customers enjoy some surplus \rightarrow the club can extract this additional surplus by increasing the cover charge.

Set the unit price equal
to marginal cost
This gives consumer surplus of $\left(V_{i}-c\right)^{2} / 2$

Set the entry charge to $\left(V_{i}-c\right)^{2} / 2$

Profit from each pair of a Young Pro. and a Teenager is now $\pi_{d}=\left[\left(V_{y}-c\right)^{2}+\right.$ $\left.\left(V_{t}-c\right)^{2}\right] / 2$

Two-Part Pricing

- Thus charge $\mathbf{P}=\mathbf{M C}=\mathbf{4}$, and the cover charges are:

$$
\begin{aligned}
E_{y} & =C S_{y}^{U}=\frac{1}{2}\left(V_{y}-c\right) Q_{y} \quad \text { for young pro. } \\
& =\frac{1}{2}\left(V_{y}-c\right)^{2}=\frac{1}{2}(\$ 16-\$ 4)^{2}=\$ 72>\$ 59.5 \\
E_{t} & =C S_{t}^{U}=\frac{1}{2}\left(V_{t}-c\right) Q_{t} \text { for teenager } \\
& =\frac{1}{2}\left(V_{t}-c\right)^{2}=\frac{1}{2}(\$ 12-\$ 4)^{2}=\$ 32>\$ 19.5
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Thus, we have: } \\
\begin{array}{ll}
Q_{y}\left(P_{U}-c\right)=12(\$ 4-\$ 4)=\$ 0 & \Pi=n(\underbrace{\left(\$ 0+E_{y}\right)}_{\pi_{y}}+\underbrace{\left(\$ 0+E_{y}\right)}_{\pi_{t}})-F \\
Q_{t}\left(P_{U}-c\right)=8(\$ 4-\$ 4)=\$ 0 & \Pi=100(\$ 72+\$ 32)-F=\$ 10400-F
\end{array}
\end{array}
$$

- The ability to practice first-degree price discrimination induces the monopoly to produce the efficient quantity \rightarrow however, the total surplus is gained solely by the monopolist.

Block Pricing

- There is another pricing method that the owner can apply \rightarrow offer a package of "Entry plus \mathbf{X} drinks for $\$ \mathbf{Y}$ ".
- To maximize profit apply the following rules:
- Set the quantity offered to each costumer type equal to the amount that type would buy at price equal to marginal cost (12 drinks \& 8 drinks respectively).
- Set the total charge for each consumer type to the total willingness to pay for the relevant quantity.
- For example: Entry and X amount of drinks for a price of Y.

Block Pricing ...

$$
\begin{aligned}
& \text { WTP }_{y}=\left(V_{y}-c\right)^{2} / 2+\left(V_{y}-c\right) c=\left(V_{y}^{2}-c^{2}\right) / 2=\left(16^{2}-4^{2}\right) / 2=\$ 120 . \\
& \text { WTP }_{t}=\left(V_{t}-c\right)^{2} / 2+\left(V_{t}-c\right) c=\left(V_{t}^{2}-c^{2}\right) / 2=\left(12^{2}-4^{2}\right) / 2=\$ 64 .
\end{aligned}
$$

Block Pricing ...

- How to implement it?
- Give customers a card at the entrance and give each of them the appropriate number of tokens (12 for the young pro. And 8 for the teenager) that can be exchanged with drinks at no additional charge.
- Profit from a consumer type i is the fee equals to WTP minus the cost of the drinks.

$$
\begin{aligned}
& \pi_{y}=\frac{\left(V_{y}^{2}-c^{2}\right)}{2}-c\left(V_{y}-c\right)=\frac{\left(V_{y}-c\right)^{2}}{2}=\$ 72 \text { for young pro. } \\
& \pi_{t}=\frac{\left(V_{t}^{2}-c^{2}\right)}{2}-c\left(V_{t}-c\right)=\frac{\left(V_{t}-c\right)^{2}}{2}=\$ 32 \text { for teenager }
\end{aligned}
$$

- Profits are exactly the same as those obtained under the two-part pricing.
- Important conditions: \rightarrow) the club can distinguish different type of consumers, 2) the club can deny entry to those do not want to pay.

Second Degree Price Discrimination

- If the seller cannot distinguish the buyers' type, e.g. the WTP (income) \rightarrow asymmetric information \rightarrow the price discrimination based on the personalized pricing cannot be done.
- A high income (WTP) buyer may pretend to be a low income buyer \rightarrow to avoid having to pay a higher price.
- Example: $\mathrm{P}_{\mathrm{H}}=16-\mathrm{Q}_{\mathrm{H}}$ and $\mathrm{P}_{\mathrm{L}}=12-\mathrm{Q}_{\mathrm{L}}$, and $\mathrm{MC}=\$ 4$.
- Recall from the First-Degree Price Discrimination:
- With Two-Part-Pricing \rightarrow Charge an entry fee of $\$ 72$ for the high WTP (high income) customers, and $\$ 32$ for the low WTP (low income) customers, and set $\mathbf{P}=\mathbf{M C}=\$ 4$ per drink for both types.
- With Block Pricing \rightarrow Charge $\$ 120$ for entry plus (=WTP) 12 drinks to high income customers and charge $\$ 64$ for entry plus (=WTP) 8 drinks to low income customers.

Second Degree Price Discrimination ...

- When the club cannot distinguish the types of buyers (asymmetric information), the first-degree price discrimination will not work:
- High income customers get no surplus from the package price designed for them, BUT can get positive surplus from the package price designed for the other type.
- So they will pretend to be low income customers to be better off, although this means that they get only smaller amount of drinks.
- The pricing scheme has to be designed such that each type of customers must prefer to choose the package designed for them to the other package \rightarrow it is incentive compatible \rightarrow menu pricing.
- Such menu pricing should be designed such that:
- Induce customers to reveal their true types.
- Self-select the package designed for them.

Second Degree Price Discrimination ...

- Incentive Compatibility Constraint:
- Any offer made to high demand customers must offer them as much consumer surplus as they would get from an offer designed for low-demand consumers.
- Thus, if the offer is incentive compatible, the high income customers will never take the package for the low income customers \rightarrow price discrimination works even if you face asymmetric information.

Second Degree Price Discrimination ...

Second Degree Price Discrimination ...

- What is the optimal menu pricing then?:
- Keep reducing the quantity of drinks offered to low-income \rightarrow make the effective price higher for them \rightarrow unfortunately this will decrease the profit from low income.
- But, the good news is, this will allow us to give a smaller price reduction (make sure that it is still incentive compatible!) to high income \rightarrow increase the profit from high income.
- Keep doing that until the reduction in profit from the low income $=$ to the increase in profit from the high income.
- Trade-off: Informational Rents vs. Efficiency.

Second Degree Price Discrimination ...

- Will the monopolist always want to supply both types of consumer?
- Not always \rightarrow there are cases where it is better to supply only highdemand types \rightarrow high-class restaurants, golf and country clubs.
- Take our example again;
- Suppose that there are \mathbf{N}_{1} low-income consumers and $\mathbf{N}_{\mathbf{h}}$ highincome consumers.
- Suppose both types of customers are served \rightarrow then the club offers (\$57.5;7 drinks) for the low income customers and (\$ 92; 12 drinks).
- Profit will be: $\Pi=\$ 31.5\left(N_{l}\right)+\$ 44\left(N_{h}\right)$
- Suppose now only high income customers are served \rightarrow the club can set the package (\$120;12 drinks), and profit will be $\Pi=\$ 72\left(N_{h}\right)$

Second Degree Price Discrimination ...

- Serving both types of customers is profitable if and only if:

$$
\begin{aligned}
& \$ 31.5\left(N_{l}\right)+\$ 44\left(N_{h}\right)>\$ 72\left(N_{h}\right) \quad \rightarrow \quad \$ 31.5\left(N_{l}\right)+28\left(N_{h}\right) \\
& \frac{N_{h}}{N_{l}}<\frac{\$ 31.5}{\$ 28}=1.125
\end{aligned}
$$

- Serving both types is profitable as long the proportion of high type consumers is not too large.
- Characteristics of the second degree price discrimination.
- Extract all consumer surplus from the low income type group.
- Leave some consumer surplus to the high income type who has incentive to pretend to be the low income type \rightarrow because of the informational rents.
- Offer less than the socially efficient quantity to the low income type but give the socially efficient quantity to the high type group.

'Third Degree Price Discrimination

- Consumers differ by some observable characteristic(s).
- A uniform price is charged to all consumers in a particular group - linear price.
- Different uniform prices are charged to different groups, for examples:
- "Kids are free"
- "Subscriptions to professional magazines \rightarrow different fee schedule.
- Supermarket discount using clip on coupons.
- Early-bird specials or happy hours; first-runs of movies vs. video.
- The pricing rule is:
- Consumers with low elasticity of demand should be charged high price, and those with high elasticity of demand should be charged a low price.

Third Degree Price Discrimination ...

- An example: The latest Harry Porter book \rightarrow sold in the US and Europe.
- The demand in the US: $\mathrm{P}_{\mathrm{U}}=36-4 \mathrm{Q}_{\mathrm{U}}$ and the demand in Europe: $\mathrm{P}_{\mathrm{E}}=24$ $-4 Q_{\mathrm{E}}, \mathrm{MC}=\$ 4$.
- Suppose that a uniform price is charged in both the US and Europe.
- Invert the demand in the U.S.

$$
\begin{gathered}
P_{U}=36-4 Q_{U} \quad \rightarrow \quad Q_{U}=9-\frac{1}{4} P_{U} \text { for } P_{U} \leq 36 \\
P_{E}=24-4 Q_{E} \quad \rightarrow \quad Q_{E}=6-\begin{array}{c}
\text { At these prices } \\
\text { only the US } \\
\text { market is artive }
\end{array} \\
\text { Now both } \\
\text { Darkets are } \\
\text { denote the aggregate demand. } P_{U}=P_{E}=P \\
Q=Q_{U}+Q_{E}=9-\frac{1}{4} P \text { for } 36 \leq P \leq \begin{array}{c}
\text { active }
\end{array} \\
Q=Q_{U}+Q_{E}=15-\frac{1}{2} P \text { for } 0 \leq P<24
\end{gathered}
$$

Third Degree Price Discrimination ...

- Suppose that a uniform price is charged in both the US and Europe (Continued...)
- Invert the direct demands:

$$
\begin{aligned}
Q= & Q_{U}+Q_{E}=9-\frac{1}{4} P \text { for } 24 \leq P \leq 36 \\
& P=36-4 Q \text { for } 0 \leq Q \leq 3 \\
Q= & Q_{U}+Q_{E}=15-\frac{1}{2} P \text { for } 0 \leq P<24 \\
& P=30-2 Q \text { for } 3 \leq Q \leq 15
\end{aligned}
$$

- Marginal revenue:

$$
M R=36-8 Q \text { for } 0 \leq Q \leq 3
$$

$$
M R=30-4 Q \text { for } 3 \leq Q \leq 15
$$

- Profit maximization:

- Eq. price:

$$
P=\$ 17
$$

Third Degree Price Discrimination ...

- Suppose that a uniform price is charged in both the US and Europe (Continued...)
- Substitute the eq. price into the individual demand functions:

$$
\begin{aligned}
& Q_{U}=9-\frac{1}{4} P_{U}=9-\frac{1}{4}(17)=4.75 \text { million } \\
& Q_{E}=6-\frac{1}{4} P_{E}=6-\frac{1}{4}(17)=1.75 \text { million }
\end{aligned}
$$

- Aggregate profit:

$$
\Pi=\left(P_{U}-c\right) Q=(17-4)(6.5)=\$ 84.5 \text { million }
$$

- The firm can do better than this \rightarrow notice that the MR is not equal to MC in both markets (when we look at each individual market) $\rightarrow \mathrm{MR}>\mathrm{MC}$ in Europe and MR $<\mathrm{MC}$ in the U.S.
- What if different prices be charged in different markets (price discrimination)?
- Consider each market separately \rightarrow set in each market MR $=\mathrm{MC} \rightarrow$ get the eq. price in each market.

Third Degree Price Discrimination ...

Demand in the US:

$$
P_{U}=36-4 Q_{U}
$$

Marginal revenue:

$$
M R=36-8 Q_{U}
$$

$\mathrm{MC}=4$
Equate MR and MC

$$
\begin{aligned}
& 36-8 Q_{U}=4 \\
& Q_{U}=4
\end{aligned}
$$

Price from the demand curve

$$
P_{U}=\$ 20
$$

Third Degree Price Discrimination ...

Demand in the Europe:

$$
P_{E}=24-4 Q_{U}
$$

Marginal revenue:

$$
\begin{aligned}
& \mathrm{MR}=24-8 \mathrm{Q}_{\mathrm{U}} \\
& \mathrm{MC}=4
\end{aligned}
$$

Equate MR and MC

$$
Q_{E}=2.5
$$

Price from the demand curve

$$
P_{E}=\$ 14
$$

Aggregate sales are 6.5 million books \rightarrow the same as without price disc, hence:

$$
\Pi=\pi_{U}+\pi_{E}=(20-4) 4+(14-4) 2.5=\$ 89 \text { millions }
$$

We have $\$ 4.5$ million greater than without price discrimination.

Third Degree Price Discrimination ...

- What if MC is not constant but instead is increasing? \rightarrow e.g. MC is increasing $\rightarrow \quad M C=0.75+\frac{1}{2} Q$
- Similar to what we'd done before, we can derive the solutions under no price discrimination (uniform pricing) by applying these steps (please redo and verify ()):
- Derive the aggregate demand as is done previously..
- Derive the associated MR.. From our example, if $Q>3$ both markets are served \rightarrow $M R=30-4 \mathrm{Q}$.
- $\mathrm{MR}=\mathrm{MC} \rightarrow 0.75+\mathrm{Q} / 2=30-4 \mathrm{Q} \rightarrow \mathrm{Q}^{*}=6.5$ million books.
- Derive the equilibrium uniform price \rightarrow since both markets are active, the relevant part of the aggregate demand fu . is $\mathrm{P}=30-2 \mathrm{Q} \rightarrow$ for $\mathrm{Q}^{*}=6.5$ we have $\mathrm{P} *=\$ 17$.
- Calculate the demand in each market $\rightarrow 4.75$ million books in the US and 1.75 million books in Europe \rightarrow get the resulting profit.

Third Degree Price Discrimination ...

- Graphical depiction:
(a) United States

(b) Europe

(c) Aggregate

Third Degree Price Discrimination ...

- Solutions with price discrimination can be derived by applying these steps (please redo and verify ()):
- Derive the MR in each market and sum-up these MRs to get the aggregate MR \rightarrow
- $\mathrm{MR}=36-8 \mathrm{Q}_{\mathrm{u}}$ for $\mathrm{P}<\$ 36$ and $\mathrm{MR}=24-8 \mathrm{Q}_{\mathrm{E}}$ for $\mathrm{P}<\$ 24 \rightarrow$ Inverting these MRs we have; $\mathrm{Q}_{\mathrm{u}}=4.5-\mathrm{MR} / 8$ and $\mathrm{Q}_{\mathrm{E}}=3-\mathrm{MR} / 8 \rightarrow$ summing these yield the aggregate MR .
- $\mathrm{Q}=\mathrm{Q}_{\mathrm{u}}+\mathrm{Q}_{\mathrm{E}}=4.5-\mathrm{MR} / 8$ for $\mathrm{Q} \leq 3 \rightarrow$ or $\mathrm{MR}=36-8 \mathrm{Q}$ for $\mathrm{Q} \leq 3$
- $\mathrm{Q}=\mathrm{Q}_{\mathrm{u}}+\mathrm{Q}_{\mathrm{E}}=7.5-\mathrm{MR} / 4$ for $\mathrm{Q}>3$. \rightarrow or $\mathrm{MR}=30-4 \mathrm{Q}$ for $\mathrm{Q}>3$
- $\quad \mathbf{M R}=\mathbf{M C} \rightarrow$ to get the aggregate output $\rightarrow 30-4 \mathrm{Q}=0.75+\mathrm{Q} / 2 \rightarrow \mathrm{Q}^{*}=6.5$ million books $\rightarrow \mathrm{MR}=30-4(6.5)=\$ 4$ (this is the equilibrium $\mathbf{M R}$ and also $\mathbf{M C}$).
- Identify equilibrium quantities in each market by equating the MR in each market from the aggregate MR curve \rightarrow In the US: $36-8 Q_{u}=4$ or $Q_{u}^{*}=4$ million books \rightarrow In Europe: $24-8 \mathrm{Q}_{\mathrm{u}}=4$ or $\mathrm{Q}^{*} \mathrm{E}=\mathbf{2 . 5}$ million books.
- Identify equilibrium prices in each market from individual market demands \rightarrow $\mathrm{P}_{\mathrm{u}}=36-4 \mathrm{Q}_{\mathrm{u}}^{*}=36-4(4)=\$ 20$ in the US and $\mathrm{P}_{\mathrm{E}}=24-4 \mathrm{Q}_{\mathrm{E}}^{*}=24-4(2.5)=\$ 14$ in Europe.

Third Degree Price Discrimination ...

- Graphical depiction:
(a) United States

(b) Europe

Price

(c) Aggregate

Third Degree Price Discrimination ...

- Often arises when firms sell differentiated products, for examples:
- Hard-back versus paper back books
- First-class versus economy airfare
- The seller needs an easily observable characteristic that signals willingness to pay.
- The seller must be able to prevent arbitrage:
- An airline company can require a Saturday night stay for a cheap flight.
- Time of purchase of movie ticket.
- Requiring proof (student ID card).
- Provide rebate coupons on the newspapers.

Third Degree Price Discrimination ...

- A more general recipe of deriving the discriminatory and uniform pricing rules.
- Suppose a monopolist supplies 2 groups of consumers with the following inverse demands.

$$
P_{1}=A_{1}-B_{1} Q_{1} \quad \text { and } \quad P_{2}=A_{2}-B_{2} Q_{2} \quad \text { assume } A_{1}>A_{2}
$$

- Inverting the inverse demands:

$$
Q_{1}=\frac{\left(A_{1}-P\right)}{B_{1}} \quad \text { and } \quad Q_{2}=\frac{\left(A_{2}-P\right)}{B_{2}}
$$

- Thus, the aggregate demand is:

$$
Q=Q_{1}+Q_{2}=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1} B_{2}}-\frac{B_{1}+B_{2}}{B_{1} B_{2}} P
$$

this holds for $P<A_{2}$

- The MR associated with the above aggregate demand:

$$
M R=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1}+B_{2}}-2 \frac{B_{1} B_{2}}{B_{1}+B_{2}} Q
$$

Third Degree Price Discrimination ...

- A more general recipe of deriving the discriminatory and uniform pricing rules ...
- Suppose for simplicity assume $\mathrm{MC}=0$ (this can of course be relaxed), hence the profit max. condition requires $\mathrm{MR}=\mathrm{MC} \rightarrow \mathrm{MR}=0 \rightarrow$ solve for $\mathrm{Q}_{\mathrm{U}}{ }^{\text {. }}$

$$
Q_{U}^{*}=\frac{A_{1} B_{2}+A_{2} B_{1}}{2 B_{1} B_{2}} \quad \text { under the uniform pricing rule. }
$$

- Substituting Q_{U} into the aggregate inverse demand yields.

$$
P_{U}^{*}=\frac{A_{1} B_{2}+A_{2} B_{1}}{2\left(B_{1}+B_{2}\right)}
$$

- Substituting P_{U} into the individual demands gives the equilibrium output in each market.

$$
Q_{U_{1}}^{*}=\frac{\left(2 A_{1}-A_{2}\right) B_{1}+A_{1} B_{2}}{2 B_{1}\left(B_{1}+B_{2}\right)} \text { and } Q_{U_{2}}^{*}=\frac{\left(2 A_{2}-A_{1}\right) B_{2}+A_{2} B_{1}}{2 B_{2}\left(B_{1}+B_{2}\right)}
$$

Third Degree Price Discrimination ...

- A more general recipe of deriving the discriminatory and uniform pricing rules ...
- Under the discriminatory pricing rule, the firm sets $\mathrm{MR}=\mathrm{MC}$ for each group. We know that MRs are:

$$
\begin{aligned}
& P_{1}=A_{1}-B_{1} Q_{1} \text { and } P_{2}=A_{2}-B_{2} Q_{2} \\
& T R_{1}=\left(A_{1}-B_{1} Q_{1}\right) Q_{1} \text { and } T R_{2}=\left(A_{2}-B_{2} Q_{2}\right) Q_{2} \\
& M R_{1}=A_{1}-2 B_{1} Q_{1} \text { and } M R_{2}=A_{2}-2 B_{2} Q_{2}
\end{aligned}
$$

- The equilibrium outputs and prices for each group:

$$
\begin{aligned}
& M R_{1}=M C \rightarrow A_{1}-2 B_{1} Q_{1}=0 \rightarrow \mathrm{Q}_{\mathrm{D}_{1}}^{*}=\frac{A_{1}}{2 B_{1}} \\
& M R_{2}=M C \rightarrow A_{2}-2 B_{2} Q_{2}=0 \rightarrow \mathrm{Q}_{\mathrm{D}_{2}}^{*}=\frac{A_{2}}{2 B_{2}} \\
& P_{D_{1}}^{*}=A_{1}-B_{1} Q_{D_{1}}^{*}=\frac{A_{1}}{2} \text { and } P_{D_{2}}^{*}=A_{2}-B_{2} Q_{D_{2}}^{*}=\frac{A_{2}}{2}
\end{aligned}
$$

- We have: $Q_{D_{1}}^{*}<Q_{U_{1}}^{*}$ and $Q_{D_{2}}^{*}>Q_{U_{1}}^{*}$ and $Q_{D_{1}}^{*}+Q_{D_{2}}^{*}=Q_{U}^{*}$

Third Degree Price Discrimination ...

- We can also verify:

$$
\begin{aligned}
& M R_{1}=P_{1}+\frac{\partial P_{1}}{\partial Q_{1}} Q_{1}=P_{1}\left(1+\frac{\partial P_{1}}{\partial Q_{1}} \frac{Q_{1}}{P_{1}}\right) \\
& M R=P_{1}\left(1+\frac{1}{\varepsilon_{1}}\right) \text { with } \varepsilon_{1}=\frac{\partial Q_{1}}{\partial P_{1}} \frac{P_{1}}{Q_{1}} \\
& \text { Similarly } M R_{2}=P_{2}\left(1+\frac{1}{\varepsilon_{2}}\right)
\end{aligned}
$$

- With price discrimination: $\mathrm{MR}_{1}=\mathrm{MR}_{2}$, and thus;

$$
P_{1}\left(1+\frac{1}{\varepsilon_{1}}\right)=P_{2}\left(1+\frac{1}{\varepsilon_{2}}\right) \text { or } \frac{P_{1}}{P_{2}}=\frac{1+\frac{1}{\varepsilon_{2}}}{1+\frac{1}{\varepsilon_{1}}}=\frac{\varepsilon_{1} \varepsilon_{2}+\varepsilon_{1}}{\varepsilon_{1} \varepsilon_{2}+\varepsilon_{2}}
$$

- If the demand curve is elastic $\rightarrow \varepsilon<-1$ and if the demand curve is inelastic $\rightarrow-1<\varepsilon<0$. Thus, price will be lower in the market with higher elasticity of demand.

